Category Archives: People

Despite the growing demand for cross-nationally-comparable statistics on women in science, national data and their use in policymaking remains limited. A study conducted by UNESCO, published in June 2018 indicates that women account for 28.8% of the world’s researchers

BecA-ILRI Hub is constantly seeking to close the gender gap by encouraging women researchers to participate in the different opportunities the platform provides.

Obaiya Utoblo is a PhD student at the University of Ghana, West Africa Center for Crop (WACCI), who had the opportunity to participate in one of BecA-ILRI Hub’s trainee workshops that equipped students with skills in science communication. The trainees were equipped with data management and communication skills, which provided them with the essentials of effective communication especially while speaking to a non-scientific audience.

While at BecA, Obaiya had the chance to interact with other women in science which gave her the valiance necessary to work towards her career goals.

Read more about her experience as a woman in science on the ISAAA website here

Growing up in Uganda, Joanne Adero’s dream was to be a doctor. Unfortunately, her dream to study medicine was not actualized, so instead she opted to embark on a course in biomedical laboratory technology at Makerere University. She discovered her love for science when she took a module on microbiology, this which led to her passion for research that put her on a path to study sweet potatoes.

Adero is a research assistant at the National Crops Resources Research Institute (NaCRRI) in Uganda where she is part of the Genomic Tools for Sweet Potato Improvement Project team. Besides developing genomics and modern breeding tools, the project places emphasis on capacity building and empowering research staff of national partners to carry out molecular work within their programs.

Due to its outstanding effort in capacity building, the BecA-ILRI Hub offers a perfect base to train in the use of modern, high-end bioscience technologies including genomics, genetics and bioinformatics tools to facilitate crop improvement and improve genetic gains in sweet potato.

Adero secured an opportunity to conduct her research at BecA-ILRI Hub through the ABCF program. “Conducting my research at BecA-ILRI Hub was one of my best career decisions because it gave her the opportunity to develop my capacity in molecular biology, genomics and bioinformatics,” she says.

While at BecA-ILRI Hub, Adero worked on molecular variability of sweet potato viruses to understand the nature of viral disease-causing organisms that are heavily affecting production of sweet potato in Uganda.

The project enabled the determination of sweet potato viruses that exist in Uganda and their genetic diversity and distribution. Ten different viruses were detected including sweet potato badnavirus and sweet potato symptomless virus which have not been previously reported in the country.

In addition, her work helped generate the full genome sequence of the sweet potato feathery mottle virus, sweet potato virus c and sweet potato chlorotic fleck virus in Uganda.

The Genomic Tools for Sweet Potato Improvement Project is funded by the Bill & Melinda Gates Foundation (BMGF) and led by the North Carolina State University (NCSU) in partnership with the International Potato Center (CIP), the Boyce Thomson Institute at Cornell University, Michigan State University, the University of Queensland, the Uganda National Agricultural Research Organization, National Crops Resources Research Institute, the Ghana Council for Scientific and Industrial Research, Crops Research Institute (CRI) and BecA-ILRI Hub.

By Jane Githinji, assistant director of veterinary services, Kenya and ABCF alumnus

Jane githinjiAs head of the virology laboratory at the Central Veterinary Laboratories in the Directorate of Veterinary Services (DVS) in Kenya, my responsibilities include laboratory surveillance, and confi rmation and reporting of animal viral diseases. My reports form the basis upon which disease control strategies are developed. It is, therefore, of the utmost importance that these reports refl ect the true picture of the disease situation in the country, from which appropriate disease control policies and strategies can be derived.

Like in most developing countries, poultry farming in Kenya is mainly in the hands of the smallholder rural poor, mostly women and young people, and is usually the only livelihood source for smallholder farmers. Outbreaks of infectious viral diseases that cannot be treated pose a major constraint on poultry production. Vaccination is the recommended method of control for these diseases. But vaccines do not always prevent occurrence of a disease.

The apparent failure of vaccines to protect chicken from infectious bursal disease (IBD) got me interested in understanding the cause of the disease despite prompt vaccinations by farmers (IBD causes immune suppression, making chicken more prone to other infectious diseases). I wanted to improve my understanding of the epidemiology of IBD in Kenya, starting with the comparative molecular characterization of the circulating viruses with the currently used vaccine virus strains.

The facilities available at the central veterinary laboratory are suitable for carrying out basic molecular analysis. However, to undertake more advanced molecular research required to gain a better understanding of IBD viruses circulating in Kenya, I needed access to the facilities at the BecAILR Hub. Under the mentorship of the BecA-ILRI Hub scientists, in a very conducive research environment as an ABCF fellow, I learned many skills, including sequence editing and analysis, primer design, scientific paper writing and communicating science to non-scientists. These crosscutting skills will be very useful in improving my diagnostic capacity, and ultimately, scientific data collection for policy development at the DVS.

Based on the feedback and recommendations I gave to the DVS director, I am confident my research findings will form the basis for developing effective IBD control strategies, including diagnosis, vaccination, hatchery surveillance and certification, IBD vaccines registration and vaccine production. Implementation of such strategies will have far reaching impacts on poultry production, poverty alleviation, nutritional security, economic empowerment for women and young people, and self-employment. Reducing antimicrobial residues in poultry products will also contribute to a reduction in antimicrobial drug resistance in humans.

With my newly acquired skills, I will be able to contribute more to livestock research: science, technology and innovation. I am a better mentor to young people, a better leader and manager, a more fulfilled person, and, above all, an asset to my country. My time as an ABCF fellow marked the beginning of what I believe will be a journey full of discoveries, networking, research development and fulfilment.

chicken and chics

Read more about the bioscience research and innovations that underpin development outcomes in the BecA-ILRI Hub 2016 Annual Report.

Enhancing aflatoxin detection for safer maize in Rwanda

ABCF alumnus Kizito Nishimwe is currently at the Iowa State University through a scholarship from the Borlaug Higher Education for Agricultural Research and Development (BHEARD) program (photo: BecA-ILRI Hub)

ABCF alumnus Kizito Nishimwe is currently at the Iowa State University through a scholarship from the Borlaug Higher Education for Agricultural Research and Development (BHEARD) program (photo: BecA-ILRI Hub)

By Kizito Nishimwe, an alumnus of the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub’s Africa Biosciences Challenge Fund program, and lecturer at the School of Food Science and Technology at the University of Rwanda’s College of Agriculture, Animal Sciences and Veterinary Medicine

Maize is a leading food crop in Rwanda, representing 60 per cent of the cereals produced in the country. Its production has risen steadily from 120,000 tonnes of grain produced in 2006 to over 500,000 tonnes in 2011 according to Rwanda’s National Institute of Statistics. However, maize is susceptible to accumulation of aflatoxins, toxic chemicals produced by a fungus. Hazardous to humans when eaten at high levels, these toxins have been associated with cancers, suppressed immune systems, reduced nutrient absorption and the stunting of children.

In 2014, I received an ABCF fellowship from the BecA-ILRI Hub to conduct research that would help fi ll gaps relating to aflatoxin detection in maize in Rwanda. During the first East African Conference on Food Science and Technology, in March 2016, and at the FARA 7th Africa Agriculture Science Week (AASW7) and General Assembly held in June 2016, in Kigali, Rwanda, I presented my findings to national policy stakeholders, including the Rwanda National Agricultural Export Development Board, the Ministry of Agriculture and Animal Resources, Rwanda Agriculture Board (RAB) and Rwanda Standards Board (RSB), as well as to international, regional and national researchers.

My research will greatly contribute to strategies being put in place to ensure safer maize in the value chain in Rwanda. Further support is being provided by the BecA-ILRI Hub, which has donated aflatoxin testing kits to progress research in this area by my home institution.

The advanced skills in aflatoxin research that I gained through the ABCF fellowship have enabled me to secure a PhD scholarship at Iowa State University under the Borlaug Higher Education for Agricultural Research and Development (BHEARD) program. I have also secured a one-year grant to facilitate the development of management strategies for minimizing afatoxin levels in animal feed. The grant is supported by Feed the Future Innovation Lab for Livestock Systems-University of Florida and is a collaborative effort between Iowa State University, the University of Rwanda and the BecA-ILRI Hub.

Read more about the bioscience research and innovations that underpin development outcomes in the BecA-ILRI Hub 2016 Annual Report.

Aphids, leafhoppers and whiteflies are responsible for the spread of diseases causing significant crop yield losses globally. On 5 July 2017, the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub hosted a symposium to explore ways in which the knowledge of plants, disease-causing organisms and their vectors can be used to combat devastating crop diseases in Africa.

Stephen Runo of Kenyatta University (left) with JIC scientists Beccy Corkill, Olu Shorinola and Sam Mugford (photo JIC/Matt Heaton)

Stephen Runo of Kenyatta University (left) with JIC scientists Beccy Corkill, Olu Shorinola and Sam Mugford (photo JIC/Matt Heaton)

In sub Saharan Africa, the aphid-transmitted bean viruses—bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV)—cause up to 100 percent losses for smallholder bean farmers. Growers of cassava—a staple food for over 250 million people— experience losses of up to 23 million tonnes annually across Africa due to disease caused by whitefly-transmitted Cassava mosaic viruses.

In the face of increased regulations on the use of pesticides, a better understanding of the plant-microbe-vector interactions could lead to the development of urgently needed bio pest-controls. The July forum brought together researchers from the BecA-ILRI Hub, Kenyatta University, International Institute of Tropical Agriculture (IITA), Auburn University and North Carolina State University based in Africa; and the John Innes Centre (JIC) from UK.

From left to right: Josiah Mutuku (BecA-ILRI Hub), Olu Shorinola (JIC), Steven Runo (Kenyatta University), Beccy Corkill (JIC) and Sam Mugford (JIC) at the BecA-ILRI Hub greenhouses (photo: JIC/ Matt Heaton

From left to right: Josiah Mutuku (BecA-ILRI Hub), Olu Shorinola (JIC), Steven Runo (Kenyatta University), Beccy Corkill (JIC) and Sam Mugford (JIC) at the BecA-ILRI Hub greenhouses (photo: JIC/ Matt Heaton

The symposium was held under the Alliance for Accelerated Crop Improvement in Africa (ACACIA) initiative—a new initiative established to harness diverse research efforts for hastened crop improvement in Africa.

Read full story: Deciphering Plant-Insect Interactions on the ACACIA website.

Read about the ACACIA initiative: New initiative to accelerate crop improvement for food security in Africa

__________________________________________________________________________________

 

Goat in a market in Nigeria (photo credit: ILRI/Mann).

Goat in a market in Nigeria (photo credit: ILRI/Mann).

From 19–30 June 2017, the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub will host the third edition of the Animal Quantitative Genetics and Genomics annual training workshop. The training is strengthening the capacity of researchers in Africa to apply an in-depth understanding of livestock genetics to the design of livestock breeding programmes.

Early this month (8–12 May 2017) over 250 experts from the public and private sectors in more than 50 countries across the globe gathered in Addis Ababa, Ethiopia to discuss the benefits and potential of livestock during the Global Agenda for Sustainable Livestock (GASL). The increasing demand for animal protein in emerging economies in Africa presents the challenge of sustainably improving livestock productivity while at the same time maintaining genetic diversity.

Since 2012, the BecA-ILRI Hub has been conducting research to improve performance of indigenous goats using their genetic diversity. Working in Cameroon and Ethiopia, the “Harnessing genetic diversity for improved goat productivity” project looked at the genetic adaptation of goat populations in the two countries to environmental challenges including drought and disease.

To Getinet Mekuriaw, an assistant professor at Bahir Dar University in Ethiopia and a visiting scientist at the BecA-ILRI Hub, the key to sustainable development of livestock in Africa is in the optimal exploitation of genetic resources to improve indigenous breeds.

‘We have the evidence of a rich genetic resource in livestock in Africa, and particularly in indigenous goats,’ Mekuriaw said ‘the next step is investing in research that will link this intelligence to the design of trait-focused breeding programs.’

Mekuriaw’s PhD contributed largely to establishing the extent of diversity among indigenous goat breeds in the two countries of interest for the BecA-led research. He also investigated the genetic potential of the goat populations in adaptation, disease resistance, reproduction and hair fibre production.

Strategies to enhance livestock production–including exploiting the natural potential of local breeds–could greatly contribute to the realization of the 2030 Agenda for Sustainable Development through increased agricultural capacity in developing countries.

_____________________________________________________________

Read more about the 7th Multi-stakeholder partnership meeting of the Global Agenda for Sustainable Livestock

Read related post – Cooperating with the future: Towards multiplying the multiple benefits of sustainable livestock 

Molly McDonough from the Smithsonian Institution and Maryanne Gitari from University of Nairobi working at the BecA-ILRI Hub (photo: BecA-ILRI Hub/Eleni Vikeli)

Molly McDonough from the Smithsonian Institution and Maryanne Gitari from University of Nairobi working at the BecA-ILRI Hub (photo: BecA-ILRI Hub/Eleni Vikeli)

The Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi recently hosted American scientist recognised for the discovery of the Wilson’s bonneted bat.

For two weeks in April 2017, Molly McDonough who was part of a team credited with discovering a new bat species from the lowlands of western Ecuador and Peru, conducted research on African predators––the leopard and hyena––at the BecA-ILRI Hub. McDonough is a postdoctoral fellow at the Smithsonian Institution in Washington DC, the world’s largest museum, education, and research complex.

McDonough, who was accompanied by Maryanne Gitari, a Kenyan graduate student from the University of Nairobi, is investigating the effects of climate change in the Mount Kenya region on the predators’ ecosystem. Her research seeks to determine how the alteration of the unique ecosystem over the last decades is affecting the diet and prey base of the two carnivores.

The regulatory hurdles of transferring animal dropping DNA samples from Kenya to the Smithsonian in the US, as well as the challenge of preserving sample quality led to the search for an alternative research base.

‘The BecA-ILRI Hub is an oasis for sequencing in the middle of Africa,’ said McDonough, ‘the next generation sequencing facilities are excellent and all the scientists are helpful and approachable!’

On the potential of such collaborations between international research institutions, national institutions and the regional hub, McDonough cited the affordability and easy access to the facilities as critical to time-strapped studies like hers.

‘The 24-hour access to the facilities is very important when you have limited time to execute the experiment and collate data,’ said McDonough. ‘We definitely intend to come back!’

__________________________________________________________________________

Article written by Eleni Vikeli, PhD researcher at the John Innes Centre (JIC), UK. Vikeli is at the BecA-ILRI Hub in Nairobi, Kenya as a communications assistant under the BecA-JIC alliance which supports capacity building, resource mobilization and technology transfer activities.

Anne Njoroge of CIP-SSA at a biotech potato confined trial site in Uganda (photo: NARO-KaZARDI/G. Baguma)

Anne Njoroge of CIP-SSA at a biotech potato confined trial site in Uganda (photo: NARO-KaZARDI/G. Baguma)

Anne Njoroge is a molecular pathologist working at the International Potato Center (CIP) in sub-Saharan Africa (SSA). Through a one year Africa Biosciences Challenge Fund (ABCF) fellowship awarded by the Biosciences eastern and central Africa–International Livestock Research Institute (BecA-ILRI) Hub, Njoroge has access to state-of-the-art research facilities that will accelerate her quest to defeat potato late blight disease.

Despite the pivotal role of women in agriculture in Africa, the contribution of women in research remains below the desired level. In recognition of International Women’s Day 2017, marked every year on March 8, CIP-SSA celebrates Anne Njoroge for her boldness in following her passion into a male dominated field.

_____________________________________________________________________

Read the full article: Bold for change: fighting potato late blight disease in Africa.

Read related article: Three women, three countries, one passion: Celebrating International Women’s Day 2017 at the BecA-ILRI Hub

 

Every year on the International Women’s day observed on March 8, the BecA-ILRI Hub celebrates women who are contributing to shaping the agricultural research for development agenda in Africa. They may be involved in research, support research or have inspired researchers who are making a difference.

Blessing Adanta (left) and Lyna Mukwa at the BecA-ILRI Hub (photo: BecA-ILRI Hub/Eleni Vikeli)

Blessing Adanta (left) and Lyna Mukwa at the BecA-ILRI Hub (photo: BecA-ILRI Hub/Eleni Vikeli)

This year, we celebrate Blessing Adanta, Jane Githinji and Lyna Mukwa who were awarded the Africa Biosciences Challenge Fund (ABCF) fellowship to conduct their research at the BecA-ILRI Hub. The ABCF fellowship is a competitive fellowship program that develops capacity for agricultural biosciences research in Africa, to support research for development projects that ultimately contribute towards increasing food and nutritional security and/or food safety in Africa.

Eleni Vikeli, PhD researcher at the John Innes Centre (UK) and Communications Assistant in BecA-ILRI Hub, interviewed the three women about the joys and challenges of being a scientist.

Blessing Adanta is a lecturer at the University of Port Harcourt in Nigeria and a PhD student of Plant Breeding and Biotechnology at Makerere University, Uganda  funded by the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) and the Carnegie cooperation, USA. In 2014, she won the African Women in Agricultural Research and Development (AWARD) and the 2014 fall Norman Borlaug Leadership Enhancement in Agriculture Programme (LEAP) fellowships.

Jane Githinji is the Assistant Director of Veterinary Services in Kenya. In 2016, her research on chicken vaccines conducted through the ABCF program, lent weight to the development of policies to guide the production of vaccines for Infectious bursal disease in Kenya.

Lyna Mukwa is an Associate Professor at the University of Kwango in the Democratic Republic of the Congo (DRC). She is also the director of the Plant Clinic of Kinshasa, a project jointly initiated by the Faculty of Agronomy of the University of Kinshasa and the Université Catholique de Louvain (Belgium), with the local support of the Agronomic and Veterinary Centre in Tropical Agriculture (CAVTK).

What has been the biggest challenge of your career so far?

Jane Githinji, Assistant Director of Veterinary Services in Kenya and ABCF alumnus

Jane Githinji, Assistant Director of Veterinary Services in Kenya and ABCF alumnus

Blessing:The biggest challenge I have encountered so far, was when I left my hometown to pursue a PhD career, while I had my daughter with me. Try having long hours in the lab and teaching students with an active toddler waiting–I am very grateful for the support of my husband through all this!

Jane: My biggest challenge has been balancing between multiple roles–as a mother, a wife, a sibling, a manager, a friend, a scientist–in such a way that I remain effective in each one of them, and without losing my peace of mind!

Lyna: The hardest thing I had to do and am still trying to tackle is maintaining a balance between my professional and personal life. While trying to cope, I learned multiple ways to organise myself and organise everything!

What is your biggest reward from being a scientist?

Blessing:  I was privileged to have been given the opportunity as an AWARD fellow, to have mentors from different countries, senior scientists with great experience and qualifications. That enhanced my skills and filled me with confidence that I use in my own teaching sessions. On top of that, I feel lucky that my profession gave me the opportunity to travel and see the world beyond my country.

Jane: Just knowing that I am contributing to making the world a better and a happier place for someone is very fulfilling. I believe I am in this world for a good purpose–to make it a better and a happier world for someone.

Lyna: In my case, the biggest reward has been the interaction with students where I can share my knowledge and expertise. I am also proud of my published work which makes me a part of the scientific community and has allowed me to work in various institutions in three different countries.

What would you say is your biggest accomplishment?

Blessing: That would be the award I received in 2015 from my home institution, University of Port Harcourt in Nigeria in recognition of my contribution to science. I felt honoured and that all my hard work and sacrifice had paid off!

Jane: I consider successfully completing my ABCF fellowship at the BecA-ILRI Hub despite the initial challenges and being able to apply my research to policy, my biggest accomplishment. It was a test of my faith, patience, and will power.

Lyna: My biggest accomplishment is getting my PhD last November and shortly after that, I was appointed Associate Professor. This was definitely a dream of mine for quite a while and I felt wonderful when I accomplished it!

The three women cherish their roles as science leaders in Africa deeply despite the challenges it brings to their daily lives. To all the girls that dream of becoming the next Marie Curie, Rosalind Franklin or Ada Lovelace, they have proved that a woman can have a family as well as a career in science. They have overcome challenges, followed their passion and are making a difference in society.

Happy International Women’s Day 2017!

Eleni VikeliArticle written by Eleni Vikeli, PhD researcher at the John Innes Centre (JIC), UK. Vikeli is at the BecA-ILRI Hub in Nairobi, Kenya as a communications assistant under the BecA-JIC alliance which supports capacity building, resource mobilization and technology transfer activities.

Read more about the BecA-JIC alliance: John Innes Centre forms research and capacity building alliance with the BecA-ILRI Hub

 

By Wokorach Godfrey, PhD student, Gulu University and research fellow at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub

Wokorach-AgshareAgricultural production is a key driver of economic growth for most of sub-Saharan Africa. It has the potential to boost economic development by improving food and nutritional security, providing employment to youth, promoting trade and generally improving livelihoods.

Agriculture under siege

However, this ‘goose that lays the golden eggs’ is plagued with challenges ranging from diseases, parasites, pests, drought, post-harvest losses and lack of access to markets. As such, many countries have experienced a decline, rather than increase in agricultural production and revenues associated with sale of agricultural products over the years.

Some of the problems can simply be addressed by educating farmers on good farming practices. Other challenges are solved through research and implementing of research findings. This requires transfer of knowledge, skills and technologies generated through research, to the farmers, often hampered by a disconnect between the farmer and the scientist.

Through the use of ICT, the distance between scientists globally is being bridged. The ability to share information and work collaboratively on virtual platforms has been made possible by online platforms specially designed to drive these conversations. Among such platforms that I have used are Agshare.Today and Yammer, which have been adapted to co-ordinate root and tuber crops, viruses and vectors research. The platforms connect scientists from different countries working on similar projects and enables them to share information they generate, get access to information they need, safely store research data and communicate their findings.

However, there is an urgent need to speed up the flow of information from researchers or extension workers to farmers and vice versa. A common platform that brings together farmers, scientists, extension officers, traders and other players in agriculture would narrow the existing gaps and potentially increase uptake of new technologies.

ICT to the rescue?

The relative affordability of mobile phones and the improving telecommunications networks in rural Africa have already resulted in evident economic benefits and mass social mobilization. The same technology availing access to vast databases by individuals seeking or sharing information on diverse topics like health, politics, news, markets and agriculture can be applied more effectively to get conversations going between farmers and scientists.

An agriculture-telecentre could facilitate information and knowledge sharing among farmers and the various groups of scientists and development specialists working to improve agricultural production. The platform could be used not only to transmit research findings, but also to receive information from farmers.

The existing technologies could be better applied to areas like disease and pest management, where detailed information such as number of affected plants, radius within which the problem occurs and severity of symptoms along with pictures from farmers, can support experts in assessing the severity of an outbreak and providing possible solutions. Additionally, extension services can relay information on where farmers can easily access the relevant agro-inputs like pesticides, fungicides and how to mix and apply these products.

I envision agriculture-telecentres being used as tools for surveillance of crop and livestock diseases, market information, weather patterns, and production trends of individual farmers. In this way, ICT can be used to overcome challenges associated with limited agricultural extension services, a scenario that is common in many rural areas of sub-Saharan Africa.

Read related article: Being social could help your science