Tag Archives: abcf

Africa Biosciences Challenge Fund fellow conducts inventive goat genetic diversity research in DR Congo

Goats are among the most common farm animals in developing countries. Africa is home to about 35% of the world’s goat population (FAO 2016). They play an important socio-economic, nutritional and cultural role in rural households. An important indicator of goats’ adaptation to environmental conditions is their reproductive efficiency.

DR Congo has three major agro-ecological zones: the alluvial basin in the northeast and the central part; savannah in the central, western and the southeast; and the high-altitude volcanic mountains in the east of the country. More than 4,082,624 indigenous goats are spread throughout these agro-ecological zones.

Herd of goats

In the Democratic Republic of Congo, goats are the second most domesticated species after chicken. Goats make up between 30% and 60% of the country’s total livestock numbers. The country hosts three major breeds: the small goat, dwarf goat and Kasai goat. Congolese goat farmers raise and breed goats for meat production and commercial transactions, contributing up to 72% of households’ income in rural areas in the country. The productivity of African’s indigenous goats is low, and little is documented on the genetic diversity, production system and distribution of goats in DR Congo.

Patrick Baenyi, an Africa Biosciences Challenge Fund (ABCF) fellow from the Evangelical University in Africa, DR Congo, undertook a survey on 202 goat farmers in the country to identify typology, production management and critical traits considered in goat selection by farmers in three agro-ecological zones — South Kivu, Tshopo and Kinshasa. In his pioneering research, he collected phenotypic data and used phenotypic and molecular markers, that are the basis for animal genetic diversity studies, to characterize goat genetic resources.

The survey revealed that goats in the three zones were clustered into breed clusters, grouped into small goat and dwarf goat, mostly characterized by a black coat colour and curved horn. The clusters were further distinguished by their reproductive traits (i.e. the number of kids per gestation period, such as twins or triplets) and the total number of kids per goat’s lifespan.

Baenyi and a member of his team collect a blood sample from a goat in Tshopo, DR Congo

Baenyi’s study was an important first step towards goat breeding in the country and aids decision-making on goat genetics improvement in the country. Its findings suggest that molecular characterization by sequencing and genotyping should be considered by animal breeders to clarify the physical differences in goat breeds that were observed and to identify whether these differences are genetic or adapted from environmental influence. A good understanding of this genetic characterization is useful in designing effective strategies for managing, improving and conserving domesticated animal resources.

‘Working with the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub reinforced my skills in conducting genetics research and showed me the value of collaborating with other researchers and sharing my findings with the public. I was also trained in bioinformatics and proposal writing and I have continued with the invaluable mentorship relationships that started during my time at the hub,’

says Baenyi.

He is currently working under the supervision of ILRI’s Roger Pelle and his and is studying for his PhD in animal genetics and breeding at the University of Nairobi.

Ko Awono promises to improve Brachiaria grass production and marketing to secure farmers’ livelihoods in Cameroon

Cameroon, like other African countries, relies on agriculture as a main economic activity with livestock employing at least 30% of the country’s rural population. The livestock sector in Cameroon is crucial to its economic growth, food and nutrition security, and job creation. Forages of African origin, such as Brachiaria have been instrumental in the transformation of the livestock sector in many parts of the world including tropical America, Australia and East Asia. But the potential of native forages to alleviate livestock feed shortage in Africa has been little explored.

In 2012, the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub started the ‘Climate-smart Brachiaria Program’ in partnership with the National Agricultural Research Systems (NARS) and development partners in sub-Saharan Africa. This program aims to increase livestock productivity in the region by providing high-quality and climate-resilient Brachiaria grass.

Paul Ko Awono, an Africa Biosciences Challenge Fund (ABCF) fellow at BecA-ILRI Hub from the Institute of Agricultural Research for Development (IRAD) in Cameroon, is researching how to improve Brachiaria seed production technology in Africa. His study, which is supervised by Sita Ghimire and Kingsley Etchu from BecA-ILRI Hub and IRAD, involves collecting information about Brachiaria seed production systems in the North and Adamawa regions of Cameroon, evaluating agronomic performances of Brachiaria landraces and improved cultivars, and examining the quality of Brachiaria seeds produced by farmers in the country. In Cameroon, Brachiaria seed is often traded as a cash crop and is a source of income for many farmers.

So far, Ko Awono’s research has revealed that the size of the farmlands dedicated to Brachiaria production are smaller (0.25 to 0.5 ha) in the North region compared to those in the Adamawa region (1 to 15 ha). His research also shows that Brachiaria seed yield is low in both regions (≤ 300 kg/ha). Major constraints on Brachiaria production in both regions include weed infestation, wandering animals and lack of market for Brachiaria seeds. Additionally, he has found that Brachiaria landraces mature earlier and are better adapted to harsh environmental conditions than improved cultivars. His research has also uncovered that Brachiaria seeds samples produced by farmers in the two regions are of variable qualities (poor to excellent) and some seeds samples are superior for germination than the improved cultivars.

Paul (middle) with his supervisors at Brachiaria experimental plots at Garoua, North Cameroon

Paul’s research revealed that the size of the farmlands dedicated to Brachiaria production by a farmer were smaller (0.25 to 0.5 ha) in the North region as compared to Adamawa region (1 to 15 ha). His research also indicated that Brachiaria seed yield was low in both regions (≤ 300 kg/ha) and the major constraints of Brachiaria production in both regions were weed infestation, wandering animals, and lack of market for Brachiaria seeds. Additionally, Brachiaria landraces were earlier in maturity and were better adapted to harsh environmental conditions than improved cultivars. His research also uncovered that Brachiaria seeds samples produced by farmers in North and Adamawa region were of variable qualities (poor to excellent) and some seeds samples were superior for germination than improved seeds.  

Ko Awono recognizes the role of the ABCF fellowship, which he received in 2019, has played in his work as a forage researcher. ‘It gave me several opportunities: I learnt how to write research proposals, set up agronomic trials, and collect, analyse, and interpret data.’ He also learned several techniques related to seed quality determination in the laboratory and greenhouse settings.  ‘The training and mentorship I received at BecA-ILRI Hub has played a key role in my work. It helped me to improve my scientific skills, which has made me a better researcher. ‘I am using the skills and knowledge I gained to help Cameroonian farmers increase the quality and quantity of Brachiaria seeds, which will improve their livestock production, incomes and livelihoods,’ he concludes.

How to make ICT work for agriculture in Africa

By Wokorach Godfrey, PhD student, Gulu University and research fellow at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub

Wokorach-AgshareAgricultural production is a key driver of economic growth for most of sub-Saharan Africa. It has the potential to boost economic development by improving food and nutritional security, providing employment to youth, promoting trade and generally improving livelihoods.

Agriculture under siege

However, this ‘goose that lays the golden eggs’ is plagued with challenges ranging from diseases, parasites, pests, drought, post-harvest losses and lack of access to markets. As such, many countries have experienced a decline, rather than increase in agricultural production and revenues associated with sale of agricultural products over the years.

Some of the problems can simply be addressed by educating farmers on good farming practices. Other challenges are solved through research and implementing of research findings. This requires transfer of knowledge, skills and technologies generated through research, to the farmers, often hampered by a disconnect between the farmer and the scientist.

Through the use of ICT, the distance between scientists globally is being bridged. The ability to share information and work collaboratively on virtual platforms has been made possible by online platforms specially designed to drive these conversations. Among such platforms that I have used are Agshare.Today and Yammer, which have been adapted to co-ordinate root and tuber crops, viruses and vectors research. The platforms connect scientists from different countries working on similar projects and enables them to share information they generate, get access to information they need, safely store research data and communicate their findings.

However, there is an urgent need to speed up the flow of information from researchers or extension workers to farmers and vice versa. A common platform that brings together farmers, scientists, extension officers, traders and other players in agriculture would narrow the existing gaps and potentially increase uptake of new technologies.

ICT to the rescue?

The relative affordability of mobile phones and the improving telecommunications networks in rural Africa have already resulted in evident economic benefits and mass social mobilization. The same technology availing access to vast databases by individuals seeking or sharing information on diverse topics like health, politics, news, markets and agriculture can be applied more effectively to get conversations going between farmers and scientists.

An agriculture-telecentre could facilitate information and knowledge sharing among farmers and the various groups of scientists and development specialists working to improve agricultural production. The platform could be used not only to transmit research findings, but also to receive information from farmers.

The existing technologies could be better applied to areas like disease and pest management, where detailed information such as number of affected plants, radius within which the problem occurs and severity of symptoms along with pictures from farmers, can support experts in assessing the severity of an outbreak and providing possible solutions. Additionally, extension services can relay information on where farmers can easily access the relevant agro-inputs like pesticides, fungicides and how to mix and apply these products.

I envision agriculture-telecentres being used as tools for surveillance of crop and livestock diseases, market information, weather patterns, and production trends of individual farmers. In this way, ICT can be used to overcome challenges associated with limited agricultural extension services, a scenario that is common in many rural areas of sub-Saharan Africa.

Read related article: Being social could help your science