Tag Archives: crops

Driving Africa’s agricultural development by enabling biosciences innovations

AR 2016 reportIn 2016, the Biosciences eastern and central Africa–International Livestock Research Institute (BecA-ILRI) Hub celebrated 15 years as a centre for excellence for agricultural research. Against a backdrop of renewed impetus for innovation in agricultural research for development (AR4D) in Africa, BecA-ILRI Hub and its partners showcased their joint achievements in responding to the Science Agenda for Agriculture in Africa (S3A)— leveraging science in an agriculture-led social and economic transformation. The event also offered us an opportunity to acknowledge our donors, whose support has made these accomplishments possible.

Research facilitated by the BecA-ILRI Hub drives the bioscience innovations that underpin development outcomes. The success of the climate-smart Brachiaria program in developing technologies that are readily adapted by farmers has generated a demand for their scaling-up. Strategic partnerships, for instance with the North Carolina State University (NCSU)—leveraging the human resource of advanced research institutions—have enabled groundbreaking work in tackling the devastating cassava mosaic disease, potentially increasing yields in what is a staple crop for over 250 million people in Africa.

Through the Africa Biosciences Challenge Fund (ABCF) fellowship program, up and coming research fellows from national agricultural research systems (NARS) have contributed to the formulation of evidence-based agricultural policies. For instance, seminal work on maize and food safety has provided a clearer picture of the interventions required throughout the value chain in Rwanda and research into chicken vaccines has supported the elaboration of policies guiding the production of vaccines for infectious bursal disease in Kenya. Moreover, the establishment and support of communities of practice (CoPs) for ABCF alumni has enabled the development of a comprehensive regional approach to the tackling of key livestock and crop research challenges.

In step with technology advances, the BecA-ILRI Hub launched the Integrated Genotyping Service and Support (IGSS) platform to enhance efficiency and precision in plant and livestock breeding, as well as quality seeds assessment. In research led by the International Maize and Wheat Improvement Center (CIMMYT), application of this new technology has improved understanding of the genetic basis for resistance to maize lethal necrosis (MLN). The ongoing upgrading of the BecA-ILRI Hub’s technology platforms is fast-tracking research within the regional NARS and reducing the need for scientists to leave Africa to do their work.

Working to shape to continent-wide processes, BecA-ILRI Hub staff joined CGIAR research scientists, policymakers, and representatives of higher education networks and the private sector at a workshop to develop the concept of the the African Agricultural Research Programme (AARP). AARP is an initiative led by the Forum for Agricultural Research in Africa (FARA) to strengthen the continent’s agricultural research systems for increased productivity, profitability and sustainability. As part of our 2018–2023 strategy, the BecA-ILRI Hub will seek to play a leading role in the application of and support for biosciences in the region. A landscape survey confirmed the comparative advantage of the BecA-ILRI Hub as an important regionally-valued bioscience facility. It identified opportunities to enhance our role in helping set the bioscience agricultural research agenda, as well as an advocate for the government funding of NARS work in bioscience technologies and services.

The coming year will, therefore, be characterized by engagement with key stakeholders to guide the development of our new five-year plan. We remain committed to helping Africa use biosciences as a means of transforming agriculture, bridging the gap between population growth and agricultural productivity on the continent. To the readers of this report, we hope you will accompany us on this grand AR4D journey in Africa. To our many partners and donors, thank you for your support.

Jimmy Smith Director General, ILRI

Jimmy Smith
Director General, ILRI

Appolinaire Djikeng Director, BecA-ILRI Hub

Appolinaire Djikeng
Director, BecA-ILRI Hub

 

 

 

 

 

 

 

 

 

 

You can download the full 2016 Annual report: http://hdl.handle.net/10568/83016

________________________________________________________________________________

Putting East African smallholder farmers on the path to global soybean market

Written by Tony Obua, African Biosciences Challenge Fund research fellow

Tony ObuaSince 2010, I have worked on developing soybean varieties with improved nutritional value and high yield. My passion for soybean research earned me a fellowship––the Africa Biosciences Challenge Fund (ABCF) fellowship––at the Biosciences eastern and central Africa-International Livestock Research (BecA-ILRI) Hub.

Through this fellowship, I am conducting in-depth analyses of five soybean varieties released by Makerere University and 95 elite soybean lines for different nutritional properties.

Owing to its increased use as human food and animal feed, soybean has great economic potential, which I want to help smallholder farmers in East Africa exploit. I am looking for a fast way of introducing good nutritional properties to existing soybean varieties and hope to develop high yielding, nutritionally superior lines.

Containing approximately 40 percent protein, 20 percent oil and an ideal supply of essential amino acids and nutrients, soybean grains are the world’s largest source of animal protein feed and the second largest source of vegetable oil globally. Aside from their significance as food and livestock feed, the crop improves soil fertility by fixing nitrogen and enhancing moisture retention.

Between 2006 and 2009, earnings from the crop in Uganda rose by 288 percent, but despite the economic opportunities in production and processing, factories established to process soybean oil and soy-based products across East Africa lack adequate raw material to run at full capacity. Furthermore, increased awareness by oil consumers has increased the demand for soybean oil as they seek more nutritious alternatives.

Through my research at the BecA-ILRI Hub and my home institution, Makerere University, I hope to contribute significantly bridging the supply gap and increasing the global competitive edge of locally produced soybean.

4N-1

About Tony Obua:
Tony Obua is a researcher at Makerere University in Uganda. He is currently conducting research on genetic improvement of oil quality and yield of soybean in Uganda at the BecA-ILRI Hub as an ABCF research fellow.

Read more about the ABCF fellowship program

Climate-smart Brachiaria grass to help Kenyan farmers withstand global warming effects

 

Brizantha cv. Xaraés, one of the improved varieties of Brachiaria under research for climate change mitigation (photo: BecA-ILRI Hub/Collins Mutai)

Brizantha cv. Xaraés, one of the improved varieties of Brachiaria under research for climate change mitigation (photo: BecA-ILRI Hub/Collins Mutai)

A recent study by the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub and the Kenya Agricultural and Livestock Research Organization (KALRO) shows that farmers in semi-arid region of Kenya could stall the adverse effects of climate change on their farms by planting drought-tolerant Brachiaria grass.

The study shows that Brachiaria grass not only improves the productivity of livestock but that it also contributes to improved soil health. Arid and semi-arid lands (ASALs) make up 83 per cent of the total land area in Kenya, which have marginal to low potential for crop production. The soils in these areas are low in plant nutrients and are prone to erosion.

The report Effects of Brachiaria grass cultivars on soil microbial biomass carbon, nitrogen and phosphorous in soils of the semi arid eastern Kenya is one of a compilation of 24 papers published on diverse studies carried out on Brachiaria grass with regards to its adaptation to drought; its impact on milk and meat production; its role in improving soil quality; and establishment of seed production systems for increased availability of the grass seeds and income generation.

Sita Ghimire, a co-author and co-editor of the report and senior scientist at the BecA-ILRI Hub leading the Brachiaria research, says the report is a culmination of pioneering research on the forage in East Africa.

Brachiaria has been used to transform livestock production in South America,’ says Ghimire, ‘however, despite the immense benefits it demonstrated in that region, the true potential of this grass is yet to be realized in its motherland, Africa.’

Livestock production in Kenya accounts for 10 per cent of the gross domestic product (GDP). With growing population, increasing affluence and changes in food habits there is an increasing demand for livestock products. Over 70 per cent of all the livestock in Kenya is found in ASALs, necessitating research to develop forage options that will sustain increased livestock productivity in the face of climate change.

The collaborative research of the BecA-ILI Hub and KALRO demonstrates that the cultivation of Brachiaria grass improves soil quality by increasing the amount of plant available carbon, nitrogen and phosphorous.

My mission to unlock the potential of ‘orphaned’ African eggplant: Ugandan researcher at the BecA-ILRI Hub

By Fred Masika, visiting scientist at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub

Fred Masika at UC Davis, US during the 13th Solanaceae Conference was held on September 12— 16, 2016

Fred Masika at UC Davis, US during the 13th Solanaceae Conference September 12— 16, 2016

The modernization of agriculture in Africa has led to the focus on cultivation of a very limited variety of food crops. Sadly, this means we are missing out on nutritional and health benefits found in traditional plants such as the African eggplant.

The African eggplant (Solanum aethiopicum) is not only a vegetable, but also has medicinal value. Skin ailments, asthma, bronchitis, diabetes and blood cholesterol are some of the health disorders that this plant is known to alleviate. In Uganda, the local variety ‘Nakati’  is increasingly gaining importance as a source of income and nutrition for smallholder farmers, mostly women and youths. I want to contribute to research that will boost its production and enable it to play a role in limiting malnourishment and income insecurity in Africa.

The Africa Biosciences Challenge Fund (ABCF) fellowship offered by the BecA-ILRI Hub provided me an opportunity to study this under-researched crop. Using high throughput genotyping technologies, I will generate information that will contribute to breeding initiatives to improve this crop.

With full support from the BecA-ILRI Hub, I also had the opportunity to attend the 13th Solanaceae Conference at University of California, Davis (UC-Davis) from 12–16 September, 2016. During the meeting themed from advances to applications, I made a one-minute pitch using a poster of my work ‘Generating genomic tools for efficient breeding of African eggplant’.

The career panel workshop chaired by Ann Powell from the UC Davis department of plant sciences afforded me the opportunity to learn from and interact with international professionals from the public sector and industry. I participated in discussions on cutting edge research in genomic tools, advances and applications for the Solanaceae species.

I am grateful for the research, capacity building opportunity and support I have received at the BecA-ILRI Hub. The training and mentorship has greatly increased my capacity in molecular biology, and bioinformatics. I am now also confident in communicating my research with scientific and non scientific audiences

About Fred Masika
Fred Bwayo Masika works with Uganda Christian University in The Department of Agricultural and Biological Sciences. He has a MSc. Botany (Genetics and Molecular biology) from Makerere University.  Realizing that there is narrowing food diversity and recognizing the potential role of traditional vegetables in combating nutrient deficiencies, Masika is passionate about research of underutilized nutritious vegetables such as those of the Solanaceae family. His work towards generating genomic tools in African eggplant will help boost production of African eggplant and related species.

Providing safe maize for Africa: Aflatoxin Proficiency Testing and Control in Africa project at the BecA-ILRI Hub

By Tim Herrman, Texas state chemist, Texas A&M AgriLife

Anne Muiruri - APTECA (photo: BecA-ILRI Hub/Alnoor Abdulla)

Anne Muiruri – APTECA program coordinator at the BecA-ILRI Hub (photo: BecA-ILRI Hub/Alnoor Abdulla)

The Aflatoxin Proficiency Testing and Control in Africa (APTECA) program hosted by the mycotoxin diagnostics platform at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub is contributing to the availability of safe maize on the African market.

The program, managed by the Texas A&M University, USA, was initiated to support the commercial maize milling sector in Kenya through a public-private partnership. Cereal millers which participate in the voluntary program manage aflatoxin risk by improving their quality systems to accurately perform their own tests for aflatoxins in maize flour.

Proficiency testing program

Participation in the APTECA program improves testing accuracy through qualification of the mill’s laboratory analysts; use of working controls with a known level of aflatoxin; routine proficiency testing; and verification of mill results by the ISO accredited Texas A&M AgriLife laboratory housed at the BecA-ILRI Hub.

In 2015, 31 laboratory analysts from commercial mills across Kenya attended training and qualified to analyse maize flour using validated aflatoxin testing platforms. These qualified individuals analyse working control samples twice a week at their respective mills to ensure testing accuracy and results are evaluated using a statistical process control charting technique. Further verification of mills’ aflatoxin test results of finished product occurs at the Texas A&M AgriLife laboratory at the BecA-ILRI Hub and results are sent to the APTECA mills to assist in quality improvement and aflatoxin risk management.

Already, APTECA has hosted five proficiency testing exercises involving 30 industry and public sector laboratories. The companies involved in the project include Osho Grain Millers; Unga Holdings; Alpha Mills; Capwell Industries; Kabansora Millers; Kenblest Group; Maisha Flour Mills; Mombasa Maize Millers; Pembe Flour Mills; Premier Group; and United Millers all from Kenya.

Co-regulation

The APTECA research is part of an effort to explore co-regulation of aflatoxin as a regulatory risk-management policy alternative with the aim of improving food safety and facilitating trade in Africa. Co-regulation involves a government-private sector partnership in regulation that includes statutory or government-backed codes of practice combined with regulatory and industry oversight. A marketing study conducted by the International Food Policy Research Institute (IFPRI) and the Western Michigan University in collaboration with Texas A&M AgriLife explored the impact on sales of marketing products branded with a logo on packages of maize meal stating ‘Aflatoxin Tested Process Verified by APTECA.’ This logo conforms to the East African Community labelling requirements and AgriLife has received trademark approval for it from the Kenya Intellectual Property Institute.

A memorandum of understanding (MoU) with a Kenya regulatory authority, accreditation of the AgriLife laboratory activities by the Kenya Accreditation Service, and training regulatory chemists from six countries and nine agencies has helped lay the groundwork for a regional public-private sector partnership to manage aflatoxin risk and facilitate trade among countries in the Common Market for Eastern and Southern Africa.

Public-private partnership for food and nutrition security: BecA-ILRI Hub–Cereal Millers Association collaboration features at continental agricultural forum

A partnership catalyzed by the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub to improve testing for aflatoxins in maize flour will feature at a side event during the 7th Africa Agriculture Science Week and the Forum for Agricultural Research in Africa (FARA) general assembly, next week (from 13-14 June 2016).

The partnership brings together the Kenya Cereal Millers Association—which has over ten million customers, including the urban poor—and the Texas A&M AgriLife laboratory which is hosted at the BecA-ILRI Hub. It is enabling millers to accurately perform their own tests for aflatoxins in maize flour, reducing aflatoxin risk and improving food safety for an estimated 16 million Kenyans.

Members of the Kenya Cereal Millers Association visit the BecA-ILRI Hub facilities

Aflatoxins are a naturally occurring carcinogenic by-product of common fungi that grow on grains and other food crops, particularly maize and groundnuts. Highly carcinogenic, aflatoxins are lethal in high doses, with chronic exposure potentially stunting infant development, blocking nutrient absorption and suppressing the immune system.

Preventing human exposure to aflatoxins involves removing crops with unacceptable aflatoxin contents from both foods and feeds.

Paloma Fernandes, the chief executive of the Kenya Cereal Millers Association, will give a presentation on industry-led approaches to controlling aflatoxin in the country’s food supply chain at the ‘Strengthening systems to optimize agriculture and nutrition outcomes in Africa’ side event.

Read event concept note: Strengthening Systems to Optimize Agriculture and Nutrition Outcomes in Africa

For more information on the Africa Agriculture Science Week visit: http://faraafrica.org/aasw7/

Follow the event on twitter: #AASW7

Read related articles:

A vision for safe, affordable and adequate food

Providing safe maize for Africa: Aflatoxin Proficiency Testing and Control in Africa project at the BecA-ILRI Hub

Regional Aflatoxin control organization recognizes role of the BecA-ILRI Hub in fighting aflatoxins

 

Ugandan scientist awarded for research on ‘orphan crop’ yam

When she chose to spend her sabbatical in 2014 conducting research at the BecA-ILRI Hub, Jacinta Akol from the National Crops Resources Research Institute in Uganda had no idea that this research would win her international awards.

Jacinta Akol receives the ‘Pat Coursey’ award from Keith Tomlins, president of the International Society for Tropical Root Crops (ISTRC). Looking on is Claude Fauqet, co-founder of the Global Cassava Partnership for the 21 Century (GCP2) (photo: WCRTC)

Jacinta Akol receives the ‘Pat Coursey’ award from Keith Tomlins, president of the International Society for Tropical Root Crops (ISTRC). Looking on is Claude Fauqet, co-founder of the Global Cassava Partnership for the 21 Century (GCP2) (photo: WCRTC)

During the First World Congress on Root and Tuber Crops (RTCs) meeting that took place in China from 18–22 January 2016, Akol was awarded the Pat Coursey prize in recognition of her contribution to research on yams in Uganda.

The research done on this under-studied, underutilized food crop by Akol through an Africa Biosciences Challenge Fund fellowship. Akol reiterated the impact of the fellowship at the BecA-ILRI Hub in defining her scientific goals and giving her career more focus.

‘While at the Hub, I was able to sharpen my skills in networking, adoption of modern scientific techniques and most importantly effective communication,’ said Akol. ‘This has really boosted my confidence and profile as a scientist’ she added.

Akol stated that the BecA-ILRI Hub is an extremely significant investment in raising agricultural research in the region.

‘At the BecA-ILRI Hub, science leaders who will improve the face of agriculture in Africa are being created,’ she said. ‘It is important that African governments support such organizations which exist to support our national agricultural research systems,’ she added.

Root and tuber crops, including yams, cassava, sweet potato, potato, cocoyams and other root crops are important to agriculture and food security of more than 100 countries. In Uganda, yam is increasingly gaining importance as a source of income for smaller holder farmers.

The RTCs congress aims at raising awareness of the importance of the RTCs in the world. It reviews scientific progress; identifies new opportunities; and sets priorities to tackle challenges including finding the resources to support research and development in areas where it is currently inadequate or lacking.

__________________________________________________________________________

About the Africa Biosciences Challenge Fund

The Africa Biosciences Challenge Fund (ABCF), managed by the BecA-ILRI Hub, provides fellowships to scientists and graduate students from African national agricultural research systems to undertake biosciences research-for-development projects at the BecA-ILRI Hub. The ABCF fellowship program develops capacity for agricultural biosciences research in Africa; supports research projects that ultimately contribute towards increasing food and nutritional security or food safety in Africa; and facilitates access to cutting-edge research facilities by African researchers.

Defining the future of genomics in plant breeding

Appolinaire Djikeng, director, the BecA-ILRI Hub speaks on the role of genomics in plant breeding

The availability of genomics tools is transforming plant breeding by making it possible to identify and capitalize on their positive genetic traits. Genomics, or the study of genes and their interrelationships and functions, is giving plant breeders the means to accelerate the development of new higher yielding crop varieties that are capable of withstanding pests, diseases, or climate changes, and ultimately improve the global status of food and nutritional security.

In this three-minute video, Appolinaire Djikeng, director of the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub in Nairobi, Kenya gives his views on the future of genomics in breeding and why research programs should invest more in the acquisition and application of genomics tools.

The BecA-ILRI Hub, a joint initiative of the African Union’s New Partnership for Africa’s Development (AU/NEPAD) and ILRI, is strengthening the capacity of African scientists to exploit advances in research by providing access to technologies previously unavailable in the region. The BecA-ILRI Hub genomics platform actively supports a wide range of research projects in molecular breeding as well as animal, crop and environmental health. Through a continued collaboration with researchers from African national agricultural research systems, the genomics platform is helping guide the design of strategies for increased agricultural productivity and crop and livestock disease management in Africa.

___________________________________________________________________________________________

Read more about the BecA-ILRI Hub Technologies and research related services

Enhancing sorghum production for an improved economy in South Sudan

Richard Zozimo begins a journey to unlock the knowledge that could transform his country’s most important food crop

With approximately 330,000 square kilometers of land space, is estimated to be suitable for cultivation and 80% of its population living in rural farming communities, South Sudan has the potential to become Africa’s granary.

Sorghum, the fifth most important grain crop in the world, is the country’s most important food staple
and grows in all its agro-ecological zones. Not only does sorghum have the potential to make South
Sudan food secure, but also to make the country a key player in the US$80 billion a year global cereals industry.

South Sudan scientist Richard Zozimo at the BecA-ILRI Hub

Richard Zozimo conducting research at the BecA-ILRI Hub in 2014 (Photo: BecA-ILRI Hub\ Marvin Wasonga)

Richard Opi B. Zozimo, a research assistant at South Sudan’s Ministry of Agriculture, Forestry, Cooperative and Rural Development has spent six months analyzing the diversity of sorghum landraces in the country. He believes increased investment in research will help his country benefit from this crop.

Zozimo says “Although it is such an important crop to South Sudan, the genetic information of sorghum is not well documented.”

The research which was funded by the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub through its Africa Biosciences Challenge Fund (ABCF) fellowship program revealed that the local varieties of sorghum have genetic markers expressing varied unique genetic traits.

“There are varieties of sorghum in my country with traits that can be harnessed to increase productivity, such as early maturation and the ability to withstand flooding,” stated Zozimo, “my research will help unveil all this information for use in national breeding programs,” he added.

South Sudan’s government is committed to transforming the largely traditional subsistence approach to farming into a market oriented, environmentally sustainable profitable enterprise.  With support from programs like the ABCF, national scientists and their collaborators can access the tools necessary to advance agriculture and impact the country’s economy.

Celebrating the woman who inspired me (3) – Mondeil Fanjavola, a charisma that fuels my pursuit for scientific excellence

Celebrated by Nasser Yao, scientist leading the plant molecular breeding activities at the BecA-ILRI Hub

Mondeil Fanjavola was my MSc supervisor at the University of Abidjan, Cocody (now University Felix Houphouet Boigny). Although she was very rigorous and demanding of her students academically, Mondeil was very caring, just like a mother. To her, supervision of post-graduate students went beyond the science. Mondeil understood that a balanced social life got better results and she tried as far as she could to help her students achieve this.

Mondeil’s charisma is so unforgettable that I still hold on to the concepts and methods of research that she taught me. In guiding my first steps in research, she taught me that everything in science should be questioned. She believes that findings or citations should only be considered as simple hypotheses rather than divine truths. To her, even the most wonderful finding was a truth only at that specific moment that it is discovered, not a static finding that will remain forever. She taught me to believe there is always room for improvement.

As I lead the activities on the BecA-ILRI Hub breeding platform, I am convinced that there is always a more effective, more efficient way to improve crops and I am determined to find it and ensure farmers benefit from advances in research.

Woman with pots-ILRI

Woman carrying traditional water pots for sale in Niger (photo credit: ILRI)