Tag Archives: research

Research at BecA-ILRI Hub supports vaccine development policy in Kenya

By Jane Githinji, assistant director of veterinary services, Kenya and ABCF alumnus

Jane githinjiAs head of the virology laboratory at the Central Veterinary Laboratories in the Directorate of Veterinary Services (DVS) in Kenya, my responsibilities include laboratory surveillance, and confi rmation and reporting of animal viral diseases. My reports form the basis upon which disease control strategies are developed. It is, therefore, of the utmost importance that these reports refl ect the true picture of the disease situation in the country, from which appropriate disease control policies and strategies can be derived.

Like in most developing countries, poultry farming in Kenya is mainly in the hands of the smallholder rural poor, mostly women and young people, and is usually the only livelihood source for smallholder farmers. Outbreaks of infectious viral diseases that cannot be treated pose a major constraint on poultry production. Vaccination is the recommended method of control for these diseases. But vaccines do not always prevent occurrence of a disease.

The apparent failure of vaccines to protect chicken from infectious bursal disease (IBD) got me interested in understanding the cause of the disease despite prompt vaccinations by farmers (IBD causes immune suppression, making chicken more prone to other infectious diseases). I wanted to improve my understanding of the epidemiology of IBD in Kenya, starting with the comparative molecular characterization of the circulating viruses with the currently used vaccine virus strains.

The facilities available at the central veterinary laboratory are suitable for carrying out basic molecular analysis. However, to undertake more advanced molecular research required to gain a better understanding of IBD viruses circulating in Kenya, I needed access to the facilities at the BecAILR Hub. Under the mentorship of the BecA-ILRI Hub scientists, in a very conducive research environment as an ABCF fellow, I learned many skills, including sequence editing and analysis, primer design, scientific paper writing and communicating science to non-scientists. These crosscutting skills will be very useful in improving my diagnostic capacity, and ultimately, scientific data collection for policy development at the DVS.

Based on the feedback and recommendations I gave to the DVS director, I am confident my research findings will form the basis for developing effective IBD control strategies, including diagnosis, vaccination, hatchery surveillance and certification, IBD vaccines registration and vaccine production. Implementation of such strategies will have far reaching impacts on poultry production, poverty alleviation, nutritional security, economic empowerment for women and young people, and self-employment. Reducing antimicrobial residues in poultry products will also contribute to a reduction in antimicrobial drug resistance in humans.

With my newly acquired skills, I will be able to contribute more to livestock research: science, technology and innovation. I am a better mentor to young people, a better leader and manager, a more fulfilled person, and, above all, an asset to my country. My time as an ABCF fellow marked the beginning of what I believe will be a journey full of discoveries, networking, research development and fulfilment.

chicken and chics

Read more about the bioscience research and innovations that underpin development outcomes in the BecA-ILRI Hub 2016 Annual Report.

Supporting African-led agricultural research to drive economic growth – Part 2

Investigating the role of bushmeat in the transmission of zoonotic diseases in Tanzania

Research conducted by the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub in collaboration with National Health Laboratory of the Tanzania Ministry of Health and Social Welfare; Nelson Mandela African Institution of Science and Technology (NM-AIST); Sokoine University of Agriculture; Tanzania National Parks; Tanzania Wildlife Research Institute; Frankfurt Zoological Society; and Pennsylvania State University.

An outcome of the BecA-ILRI Hub’s Swedish funded initiative to strengthen infrastructural and human capability at NM-AIST, was the awarding of a grant to the institution by the US Defense Threat Reduction Agency.

The NM-AIST School of Life Sciences and Bioengineering and a consortium of partners including the BecA-ILRI Hub received a grant to investigate the role of bushmeat in the transmission of six pathogens between animals and humans in Tanzania.

An interdisciplinary and multi-institutional team of scientists from Tanzania, Kenya and the US are using state-of-the-art techniques to map the distribution of anthrax, ebola, marburg and monkeypox viruses as well as Brucella and Coxiella in bushmeat in Tanzania. The team assesses the biological risk and potential for impact on human health from these diseases.

The BecA-ILRI Hub provides capacity building, expertise and technology for the microbiome component of the project using the genomics platform. During a week-long workshop facilitated by the BecA-ILRI Hub at NM-AIST, Francesca Stomeo provided training on the theory and practice of the genomics pipeline to be used in the project.

Read more about the bioscience research and innovations that underpin development outcomes in the BecA-ILRI Hub 2016 Annual Report.

bushmeat

Supporting African-led agricultural research to drive economic growth – Part 1

Scaling up the use of Brachiaria grass as a key forage in Africa

Research implemented in Kenya and Rwanda by the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub and national partners — the Kenya Agricultural and Livestock Research Organization (KALRO) and  Rwanda Agriculture Board (RAB)

On-farm evaluations in Kenya and Rwanda have confirmed that the use of Brachiaria grass extends forage availability for livestock by up to three dry months. These evaluations also confirmed previous observations of increases in milk production and weight when cattle are fed on Brachiaria grass. Over 6,000 farmers in both countries are growing the four best-bet Brachiaria varieties (Basilisk, MG4, Piatã and Xaraés), which were identified through the use of a participatory approach with key stakeholders. These varieties are being concurrently scaled out in Kenya and Mali by the Accelerated Value Chain Development (AVDD) dairy project, funded by the United States Agency for International Development (USAID) Feed the Future Initiative. There is growing interest and a push to adopt Brachiaria grasses in other countries including Botswana, Cameroon, Mozambique, Namibia and Somalia.

This research has identified potentially beneficial bacteria that occur naturally within the grass (bacterial endophytes). The endophytes could be useful: increasing production of hormones that regulate: plant growth and boost biomass production in Brachiaria; improving soil nutrient solubility and soil fertility; enhancing drought tolerance; and improving the overall health of the grass. These endophytes are currently being evaluated under greenhouse conditions for their ability to confer drought tolerance to Brachiaria.

To ensure the transfer of technologies to national programs, seven researchers from five East African countries were trained on forages biotechnology through the Brachiaria program. After periods of between six and nine months at the BecA-ILRI Hub the NARS researchers returned to their home institutions with transferable skills acquired through the training. An in-depth external review of the program concluded that it has made significant contributions to the improvement of forage availability and livestock productivity in the aforementioned program countries.

Read more about the bioscience research and innovations that underpin development outcomes in the BecA-ILRI Hub 2016 Annual Report.

Screen Shot 2017-08-10 at 3.22.04 PM

 

Exploring biological control of crop disease through plant-pest interactions

Aphids, leafhoppers and whiteflies are responsible for the spread of diseases causing significant crop yield losses globally. On 5 July 2017, the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub hosted a symposium to explore ways in which the knowledge of plants, disease-causing organisms and their vectors can be used to combat devastating crop diseases in Africa.

Stephen Runo of Kenyatta University (left) with JIC scientists Beccy Corkill, Olu Shorinola and Sam Mugford (photo JIC/Matt Heaton)
Stephen Runo of Kenyatta University (left) with JIC scientists Beccy Corkill, Olu Shorinola and Sam Mugford (photo JIC/Matt Heaton)

In sub Saharan Africa, the aphid-transmitted bean viruses—bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV)—cause up to 100 percent losses for smallholder bean farmers. Growers of cassava—a staple food for over 250 million people— experience losses of up to 23 million tonnes annually across Africa due to disease caused by whitefly-transmitted Cassava mosaic viruses.

In the face of increased regulations on the use of pesticides, a better understanding of the plant-microbe-vector interactions could lead to the development of urgently needed bio pest-controls. The July forum brought together researchers from the BecA-ILRI Hub, Kenyatta University, International Institute of Tropical Agriculture (IITA), Auburn University and North Carolina State University based in Africa; and the John Innes Centre (JIC) from UK.

From left to right: Josiah Mutuku (BecA-ILRI Hub), Olu Shorinola (JIC), Steven Runo (Kenyatta University), Beccy Corkill (JIC) and Sam Mugford (JIC) at the BecA-ILRI Hub greenhouses (photo: JIC/ Matt Heaton

From left to right: Josiah Mutuku (BecA-ILRI Hub), Olu Shorinola (JIC), Steven Runo (Kenyatta University), Beccy Corkill (JIC) and Sam Mugford (JIC) at the BecA-ILRI Hub greenhouses (photo: JIC/ Matt Heaton

The symposium was held under the Alliance for Accelerated Crop Improvement in Africa (ACACIA) initiative—a new initiative established to harness diverse research efforts for hastened crop improvement in Africa.

Read full story: Deciphering Plant-Insect Interactions on the ACACIA website.

Read about the ACACIA initiative: New initiative to accelerate crop improvement for food security in Africa

__________________________________________________________________________________

 

Scientists applying genomic ‘intelligence’ to sustainable livestock development in Africa at the BecA-ILRI Hub

Goat in a market in Nigeria (photo credit: ILRI/Mann).

Goat in a market in Nigeria (photo credit: ILRI/Mann).

From 19–30 June 2017, the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub will host the third edition of the Animal Quantitative Genetics and Genomics annual training workshop. The training is strengthening the capacity of researchers in Africa to apply an in-depth understanding of livestock genetics to the design of livestock breeding programmes.

Early this month (8–12 May 2017) over 250 experts from the public and private sectors in more than 50 countries across the globe gathered in Addis Ababa, Ethiopia to discuss the benefits and potential of livestock during the Global Agenda for Sustainable Livestock (GASL). The increasing demand for animal protein in emerging economies in Africa presents the challenge of sustainably improving livestock productivity while at the same time maintaining genetic diversity.

Since 2012, the BecA-ILRI Hub has been conducting research to improve performance of indigenous goats using their genetic diversity. Working in Cameroon and Ethiopia, the “Harnessing genetic diversity for improved goat productivity” project looked at the genetic adaptation of goat populations in the two countries to environmental challenges including drought and disease.

To Getinet Mekuriaw, an assistant professor at Bahir Dar University in Ethiopia and a visiting scientist at the BecA-ILRI Hub, the key to sustainable development of livestock in Africa is in the optimal exploitation of genetic resources to improve indigenous breeds.

‘We have the evidence of a rich genetic resource in livestock in Africa, and particularly in indigenous goats,’ Mekuriaw said ‘the next step is investing in research that will link this intelligence to the design of trait-focused breeding programs.’

Mekuriaw’s PhD contributed largely to establishing the extent of diversity among indigenous goat breeds in the two countries of interest for the BecA-led research. He also investigated the genetic potential of the goat populations in adaptation, disease resistance, reproduction and hair fibre production.

Strategies to enhance livestock production–including exploiting the natural potential of local breeds–could greatly contribute to the realization of the 2030 Agenda for Sustainable Development through increased agricultural capacity in developing countries.

_____________________________________________________________

Read more about the 7th Multi-stakeholder partnership meeting of the Global Agenda for Sustainable Livestock

Read related post – Cooperating with the future: Towards multiplying the multiple benefits of sustainable livestock 

Climate-smart Brachiaria grass to help Kenyan farmers withstand global warming effects

 

Brizantha cv. Xaraés, one of the improved varieties of Brachiaria under research for climate change mitigation (photo: BecA-ILRI Hub/Collins Mutai)

Brizantha cv. Xaraés, one of the improved varieties of Brachiaria under research for climate change mitigation (photo: BecA-ILRI Hub/Collins Mutai)

A recent study by the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub and the Kenya Agricultural and Livestock Research Organization (KALRO) shows that farmers in semi-arid region of Kenya could stall the adverse effects of climate change on their farms by planting drought-tolerant Brachiaria grass.

The study shows that Brachiaria grass not only improves the productivity of livestock but that it also contributes to improved soil health. Arid and semi-arid lands (ASALs) make up 83 per cent of the total land area in Kenya, which have marginal to low potential for crop production. The soils in these areas are low in plant nutrients and are prone to erosion.

The report Effects of Brachiaria grass cultivars on soil microbial biomass carbon, nitrogen and phosphorous in soils of the semi arid eastern Kenya is one of a compilation of 24 papers published on diverse studies carried out on Brachiaria grass with regards to its adaptation to drought; its impact on milk and meat production; its role in improving soil quality; and establishment of seed production systems for increased availability of the grass seeds and income generation.

Sita Ghimire, a co-author and co-editor of the report and senior scientist at the BecA-ILRI Hub leading the Brachiaria research, says the report is a culmination of pioneering research on the forage in East Africa.

Brachiaria has been used to transform livestock production in South America,’ says Ghimire, ‘however, despite the immense benefits it demonstrated in that region, the true potential of this grass is yet to be realized in its motherland, Africa.’

Livestock production in Kenya accounts for 10 per cent of the gross domestic product (GDP). With growing population, increasing affluence and changes in food habits there is an increasing demand for livestock products. Over 70 per cent of all the livestock in Kenya is found in ASALs, necessitating research to develop forage options that will sustain increased livestock productivity in the face of climate change.

The collaborative research of the BecA-ILI Hub and KALRO demonstrates that the cultivation of Brachiaria grass improves soil quality by increasing the amount of plant available carbon, nitrogen and phosphorous.

Three women, three countries, one passion: Celebrating International Women’s Day 2017 at the BecA-ILRI Hub

Every year on the International Women’s day observed on March 8, the BecA-ILRI Hub celebrates women who are contributing to shaping the agricultural research for development agenda in Africa. They may be involved in research, support research or have inspired researchers who are making a difference.

Blessing Adanta (left) and Lyna Mukwa at the BecA-ILRI Hub (photo: BecA-ILRI Hub/Eleni Vikeli)

Blessing Adanta (left) and Lyna Mukwa at the BecA-ILRI Hub (photo: BecA-ILRI Hub/Eleni Vikeli)

This year, we celebrate Blessing Adanta, Jane Githinji and Lyna Mukwa who were awarded the Africa Biosciences Challenge Fund (ABCF) fellowship to conduct their research at the BecA-ILRI Hub. The ABCF fellowship is a competitive fellowship program that develops capacity for agricultural biosciences research in Africa, to support research for development projects that ultimately contribute towards increasing food and nutritional security and/or food safety in Africa.

Eleni Vikeli, PhD researcher at the John Innes Centre (UK) and Communications Assistant in BecA-ILRI Hub, interviewed the three women about the joys and challenges of being a scientist.

Blessing Adanta is a lecturer at the University of Port Harcourt in Nigeria and a PhD student of Plant Breeding and Biotechnology at Makerere University, Uganda  funded by the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) and the Carnegie cooperation, USA. In 2014, she won the African Women in Agricultural Research and Development (AWARD) and the 2014 fall Norman Borlaug Leadership Enhancement in Agriculture Programme (LEAP) fellowships.

Jane Githinji is the Assistant Director of Veterinary Services in Kenya. In 2016, her research on chicken vaccines conducted through the ABCF program, lent weight to the development of policies to guide the production of vaccines for Infectious bursal disease in Kenya.

Lyna Mukwa is an Associate Professor at the University of Kwango in the Democratic Republic of the Congo (DRC). She is also the director of the Plant Clinic of Kinshasa, a project jointly initiated by the Faculty of Agronomy of the University of Kinshasa and the Université Catholique de Louvain (Belgium), with the local support of the Agronomic and Veterinary Centre in Tropical Agriculture (CAVTK).

What has been the biggest challenge of your career so far?

Jane Githinji, Assistant Director of Veterinary Services in Kenya and ABCF alumnus

Jane Githinji, Assistant Director of Veterinary Services in Kenya and ABCF alumnus

Blessing:The biggest challenge I have encountered so far, was when I left my hometown to pursue a PhD career, while I had my daughter with me. Try having long hours in the lab and teaching students with an active toddler waiting–I am very grateful for the support of my husband through all this!

Jane: My biggest challenge has been balancing between multiple roles–as a mother, a wife, a sibling, a manager, a friend, a scientist–in such a way that I remain effective in each one of them, and without losing my peace of mind!

Lyna: The hardest thing I had to do and am still trying to tackle is maintaining a balance between my professional and personal life. While trying to cope, I learned multiple ways to organise myself and organise everything!

What is your biggest reward from being a scientist?

Blessing:  I was privileged to have been given the opportunity as an AWARD fellow, to have mentors from different countries, senior scientists with great experience and qualifications. That enhanced my skills and filled me with confidence that I use in my own teaching sessions. On top of that, I feel lucky that my profession gave me the opportunity to travel and see the world beyond my country.

Jane: Just knowing that I am contributing to making the world a better and a happier place for someone is very fulfilling. I believe I am in this world for a good purpose–to make it a better and a happier world for someone.

Lyna: In my case, the biggest reward has been the interaction with students where I can share my knowledge and expertise. I am also proud of my published work which makes me a part of the scientific community and has allowed me to work in various institutions in three different countries.

What would you say is your biggest accomplishment?

Blessing: That would be the award I received in 2015 from my home institution, University of Port Harcourt in Nigeria in recognition of my contribution to science. I felt honoured and that all my hard work and sacrifice had paid off!

Jane: I consider successfully completing my ABCF fellowship at the BecA-ILRI Hub despite the initial challenges and being able to apply my research to policy, my biggest accomplishment. It was a test of my faith, patience, and will power.

Lyna: My biggest accomplishment is getting my PhD last November and shortly after that, I was appointed Associate Professor. This was definitely a dream of mine for quite a while and I felt wonderful when I accomplished it!

The three women cherish their roles as science leaders in Africa deeply despite the challenges it brings to their daily lives. To all the girls that dream of becoming the next Marie Curie, Rosalind Franklin or Ada Lovelace, they have proved that a woman can have a family as well as a career in science. They have overcome challenges, followed their passion and are making a difference in society.

Happy International Women’s Day 2017!

Eleni VikeliArticle written by Eleni Vikeli, PhD researcher at the John Innes Centre (JIC), UK. Vikeli is at the BecA-ILRI Hub in Nairobi, Kenya as a communications assistant under the BecA-JIC alliance which supports capacity building, resource mobilization and technology transfer activities.

Read more about the BecA-JIC alliance: John Innes Centre forms research and capacity building alliance with the BecA-ILRI Hub

 

How to make ICT work for agriculture in Africa

By Wokorach Godfrey, PhD student, Gulu University and research fellow at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub

Wokorach-AgshareAgricultural production is a key driver of economic growth for most of sub-Saharan Africa. It has the potential to boost economic development by improving food and nutritional security, providing employment to youth, promoting trade and generally improving livelihoods.

Agriculture under siege

However, this ‘goose that lays the golden eggs’ is plagued with challenges ranging from diseases, parasites, pests, drought, post-harvest losses and lack of access to markets. As such, many countries have experienced a decline, rather than increase in agricultural production and revenues associated with sale of agricultural products over the years.

Some of the problems can simply be addressed by educating farmers on good farming practices. Other challenges are solved through research and implementing of research findings. This requires transfer of knowledge, skills and technologies generated through research, to the farmers, often hampered by a disconnect between the farmer and the scientist.

Through the use of ICT, the distance between scientists globally is being bridged. The ability to share information and work collaboratively on virtual platforms has been made possible by online platforms specially designed to drive these conversations. Among such platforms that I have used are Agshare.Today and Yammer, which have been adapted to co-ordinate root and tuber crops, viruses and vectors research. The platforms connect scientists from different countries working on similar projects and enables them to share information they generate, get access to information they need, safely store research data and communicate their findings.

However, there is an urgent need to speed up the flow of information from researchers or extension workers to farmers and vice versa. A common platform that brings together farmers, scientists, extension officers, traders and other players in agriculture would narrow the existing gaps and potentially increase uptake of new technologies.

ICT to the rescue?

The relative affordability of mobile phones and the improving telecommunications networks in rural Africa have already resulted in evident economic benefits and mass social mobilization. The same technology availing access to vast databases by individuals seeking or sharing information on diverse topics like health, politics, news, markets and agriculture can be applied more effectively to get conversations going between farmers and scientists.

An agriculture-telecentre could facilitate information and knowledge sharing among farmers and the various groups of scientists and development specialists working to improve agricultural production. The platform could be used not only to transmit research findings, but also to receive information from farmers.

The existing technologies could be better applied to areas like disease and pest management, where detailed information such as number of affected plants, radius within which the problem occurs and severity of symptoms along with pictures from farmers, can support experts in assessing the severity of an outbreak and providing possible solutions. Additionally, extension services can relay information on where farmers can easily access the relevant agro-inputs like pesticides, fungicides and how to mix and apply these products.

I envision agriculture-telecentres being used as tools for surveillance of crop and livestock diseases, market information, weather patterns, and production trends of individual farmers. In this way, ICT can be used to overcome challenges associated with limited agricultural extension services, a scenario that is common in many rural areas of sub-Saharan Africa.

Read related article: Being social could help your science

My mission to unlock the potential of ‘orphaned’ African eggplant: Ugandan researcher at the BecA-ILRI Hub

By Fred Masika, visiting scientist at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub

Fred Masika at UC Davis, US during the 13th Solanaceae Conference was held on September 12— 16, 2016

Fred Masika at UC Davis, US during the 13th Solanaceae Conference September 12— 16, 2016

The modernization of agriculture in Africa has led to the focus on cultivation of a very limited variety of food crops. Sadly, this means we are missing out on nutritional and health benefits found in traditional plants such as the African eggplant.

The African eggplant (Solanum aethiopicum) is not only a vegetable, but also has medicinal value. Skin ailments, asthma, bronchitis, diabetes and blood cholesterol are some of the health disorders that this plant is known to alleviate. In Uganda, the local variety ‘Nakati’  is increasingly gaining importance as a source of income and nutrition for smallholder farmers, mostly women and youths. I want to contribute to research that will boost its production and enable it to play a role in limiting malnourishment and income insecurity in Africa.

The Africa Biosciences Challenge Fund (ABCF) fellowship offered by the BecA-ILRI Hub provided me an opportunity to study this under-researched crop. Using high throughput genotyping technologies, I will generate information that will contribute to breeding initiatives to improve this crop.

With full support from the BecA-ILRI Hub, I also had the opportunity to attend the 13th Solanaceae Conference at University of California, Davis (UC-Davis) from 12–16 September, 2016. During the meeting themed from advances to applications, I made a one-minute pitch using a poster of my work ‘Generating genomic tools for efficient breeding of African eggplant’.

The career panel workshop chaired by Ann Powell from the UC Davis department of plant sciences afforded me the opportunity to learn from and interact with international professionals from the public sector and industry. I participated in discussions on cutting edge research in genomic tools, advances and applications for the Solanaceae species.

I am grateful for the research, capacity building opportunity and support I have received at the BecA-ILRI Hub. The training and mentorship has greatly increased my capacity in molecular biology, and bioinformatics. I am now also confident in communicating my research with scientific and non scientific audiences

About Fred Masika
Fred Bwayo Masika works with Uganda Christian University in The Department of Agricultural and Biological Sciences. He has a MSc. Botany (Genetics and Molecular biology) from Makerere University.  Realizing that there is narrowing food diversity and recognizing the potential role of traditional vegetables in combating nutrient deficiencies, Masika is passionate about research of underutilized nutritious vegetables such as those of the Solanaceae family. His work towards generating genomic tools in African eggplant will help boost production of African eggplant and related species.

Saving the small ruminant farming sector in DRC: BecA-ILRI Hub supports ‘Peste des petits ruminants’ research

Democratic Republic of Congo’s Birindwa Ahadi is at the BecA-ILRI Hub on a quest for knowledge that could transform his country’s livestock industry.

Birindwa Ahadi from Univesité Evangelique en Afrique, DRC working at the BecA-ILRI Hub Laboratory (photo: BecA-ILRI Hub/Sylvia Muthoni)

Birindwa Ahadi from Univesité Evangelique en Afrique, DRC working at the BecA-ILRI Hub Laboratory (photo: BecA-ILRI Hub/Sylvia Muthoni)

Small ruminant farming in the Democratic Republic of Congo (DRC) accounts for more than 72 percent of household incomes. However, according FAO reports, this important source of meat, milk, skin and organic manure in DRC is under threat.

An estimated 1,000,000 goats and 600,000 sheep are at risk of contracting peste des petits ruminants (PPR) disease–also referred to as ‘goat plague’ resulting in annual losses of approximately USD 5.3 million.

From December 2015, Birindwa Ahadi, a lecturer at the Univesité Evangelique en Afrique, DRC has been at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub seeking a solution to the challenge facing thousands of smallholder farmers in his country.

Through an Africa Biosciences Challenge Fund (ABCF) fellowship at the BecA-ILRI Hub, Ahadi has been carrying out an in-depth analysis of incidences of the PPR virus in goats and sheep. Ahadi hopes to identify PPR hotspots in DRC and identify PPR risk factors. These findings will contribute to appropriate control strategies and policies to be included in a national program for control and eradication of PPR and other related trans boundary diseases.

‘Being the first published report on the prevalence of PPR in eastern DRC, my research at the BecA-ILRI Hub will make a significant contribution to the Ministry of Agriculture in my country,’ says Ahadi.

Since its inception in 2010, the ABCF program has contributed to strengthening capacities of individual scientists and institutions in sub Saharan Africa and is looking forward to supporting DRC in managing the PPR disease that has a high negative impact on food and economic security for smallholder farmers.