Category Archives: Research

Cattle feeding on Brachiaria grass

Brachiaria grass, a climate-smart ‘wonder grass’ for livestock farmers

In this interview, Mwihaki Mundia, BecA-ILRI Hub’s Communications Officer, sits down with Sita Ghimire, who heads the Brachiaria research and development program at the Biosciences eastern and central Africa – International Livestock Research Institute (BecA-ILRI) Hub, to talk about the origins of this important grass and how it contributes to more milk and meat production in livestock.

Mundia: Maybe you could start by sharing a brief history of Brachiaria grass?

Sita: Brachiaria grass is a tropical forage that is native to Africa. It was introduced to America and Australia in the 1800′s. Through Australia, many species were later introduced to Asia and the south Pacific region. The use of Brachiaria for commercial pasture production only began in Africa at the start of the twenty-first century.

M: How many Brachiaria species currently exist in Africa?

S: There are seven species of African origin, namely, B. arrecta, B. brizantha, B. dictyoneura, B. decumbens, B. humidicola, B. mutica and B. ruziziensis. These are all used as fodder for livestock.


Sita Ghimire, in the Brachiaria grass field at Kapiti reasearch station in Machakos county, Kenya

M: Why did BecA-ILRI Hub choose to work with Brachiaria grass as a means of improving livestock productivity in sub-Saharan Africa (SSA)?

S: Low livestock productivity has plagued sub-Saharan Africa for a long time, creating amongst other things, a severe food shortage for one of the fastest growing human populations in the world. Some of the major factors that contribute to these are feeds shortage and low-quality feeds. Brachiaria provides a solution because it produces a large amount of high-quality biomass that improves the availability of quality feed, its high nutrient value increases livestock productivity of meat and milk and reduces the overall carbon footprint of the livestock production system. Brachiaria additionally tolerates extreme climatic conditions and grows well in low fertile soils. It makes for a great substitute to other forage grasses such as Napier grass which is widely cultivated in sub-Saharan Africa.

M: Would you recommend Brachiaria grass over other forage crops e.g., Napier grass that has been a popular forage for a long time in East Africa?

S: Though Napier grass is very popular in East Africa, its productivity has been on the decline over the years due to smut and stunt disease attacks. The introduction of Brachiaria grass has provided an additional forage option to farmers and helped to bridge the livestock feed supply gaps especially during the dry seasons. Brachiaria grass is one of the top-ranked tropical forages for nutritive value, livestock productivity and climate change adaptation. It is suitable for both grazing and cut and carry systems.

M: What are the main activities that the Climate-smart Brachiaria program at BecA-ILRI Hub carries out?

S: The program provides technical support to National African Research Systems (NARS), non-governmental organizations, and the private sector on Brachiaria grass production and forage biosciences; carries research on Brachiaria grass diseases management; develops Brachiaria-legume cropping system for soil fertility management; identifies Brachiaria seed production niches in Africa; and discovers and uses plant beneficial microbes to enhance resilience and productivity of Brachiaria grass in sub-Sharan Africa.


Sita and an ILRI casual staff measure the length of a fully matured Brachiaria cultivar at the Kapiti research station

M: Most livestock farmers in SSA are small-scale producers who do not have much land to grow their food let alone grow fodder, how do you encourage them to adopt Brachiaria grass?

S: The transformation of the livestock sector in Africa depends on intensification of livestock production systems. Improved forages like Brachiaria grass are a great resource that play a major role as a source of high-quality feed at a low cost. Planting Brachiaria grass in farmlands improves feed availability, enhances livestock productivity, and generates income for livestock farmers. It also protects soil from erosion and sustains soil fertility. Due to these benefits many livestock farmers especially those with smaller land sizes are dedicating more land under Brachiaria grass, with some farming it in place of staple food crops.

M: How many varieties/cultivars of Brachiaria are available to farmers in Kenya and how many other countries in SSA have benefitted from the Climate-smart Brachiaria program?

S:  Basilisk, MG-4, Piata and Xaraes are the Brachiaria varieties that are being promoted by ILRI and Kenya Agricultural and Livestock Research Organization (KALRO) in Kenya. These cultivars are currently undergoing the registration process in Kenya. The seeds of these cultivars are available in limited quantities in Kenya through KALRO. Hybrid seed cultivars like Mulato II, Cayman and Cobra are also being sold in Kenya.  So far, about 40,000 farming households in 18 countries in SSA are beneficiaries of the Climate-smart Brachiaria program.


Cattle feed on Brachiaria grass at the ILRI farm on the Nairobi campus. The grass has proven to improve milk and meat production in livestock

M: How else can farmers use this “wonder grass?”

S: Brachiaria grass can be used as a bioenergy crop to produce biofuel.

It can also be used in crop protection, soil conservation and has great environmental qualities.

Farmers can use Brachiaria to generate income by producing and selling hay. Additionally, the production of rooted tillers as a means of planting materials has recently emerged as a new avenue for agro-business for youth and women in the SSA region.

M: How long does it take for Brachiaria grass to grow to its full height and nutrient potential after planting?

S: The height and time it takes for Brachiaria to attain it is influenced by various factors such as the variety, altitude, soil fertility and other agro-climatic conditions. At the ILRI Nairobi campus, the grass grows to a full height of 1.8 metres. Most varieties take about four to five months to attain their full height.  The nutritive value of forage declines as it matures, it is therefore important to identify the right harvesting time with the perfect balance of biomass and nutritive value.  For good quality hay, Brachiaria should be harvested prior to flowering.

M: What are some of the challenges that farmers might expect to face while growing Brachiaria grass?

S: The major challenges could be pests and diseases and a decline in soil fertility if manure and fertilizers are not applied on a regular basis.    

7.-Training_DNA-extraction-2

Researcher using skills gained at BecA-ILRI Hub to hasten adoption of improved Brachiaria grass varieties in Tanzania

With an area of 885,800 km2 and a population of 58,458,191 people, Tanzania is one of the largest and most populous countries in Africa. Crop and livestock farming is the main source of livelihood for most Tanzanians. The country’s large livestock population includes 25 million cattle, 16.7 million goats, and eight million sheep.

The main source of feeds for livestock in Tanzania is natural pastures, which are found in the country’s vast rangelands. But these feed sources are often of poor quality and insufficient, especially in the dry seasons. Additionally, conversion of natural pasture into crop production and non-agricultural use areas, and the degradation of pasture due to overgrazing and poor management have reduced the feed available to the country’s livestock.

One step towards addressing the shortage of quality animal feeds in Tanzania is by establishing the available alternative feed resources. Walter Mangesho, a senior livestock research officer at the Tanzania Livestock Research Institute (TALIRI) and a former Africa Biosciences Challenge Fund (ABCF) fellow at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, is assessing the Brachiaria grass ecotypes in Tanzania and their morphological and genetic characterizations.


Mangesho collects morphological data (measuring culm thickness) of one Brachiaria ecotype. Standing is TALIRI Tanga field research assistant Salvatory Kavishe recording data

In addition to establishing the types of Brachiaria grasses in the country; Mangesho’s research aims to improve selected Brachiaria grass cultivars, which have high biomass production potential, are nutritive to livestock and resilient to climate change. His goal is to avail the improved Brachiaria varieties to smallholder farmers in Tanzania who will use them as feed to improve the productivity of their animals. ‘I am determined to work towards solving the major livestock challenges in Tanzania, which include a shortage of quality feeds,’ he said

His research, which started in Dodoma, has so far identified and collected 142 Brachiaria ecotypes from 10 regions of Tanzania. These ecotypes are now maintained in a field at TALIRI in Tanga, Tanzania. All the ecotypes were characterized for morphological characteristics and genetic diversity. A subset of the ecotypes with superior phenotypes have been selected and are currently being multiplied for further evaluation.

‘While at the BecA-ILRI Hub, I worked with a team of highly-qualified researchers, mentors and trainers who helped me in molecular biology and genomics research that I had no prior experience with. They strengthened my morphological data collection skills,’ Mangesho remembers of his time as an ABCF fellow at BecA-ILRI Hub.


Mangesho trains on DNA extraction at BecA-ILRI Hub

He was supervised by BecA-ILRI Hub’s Sita Ghimire, Cathrine Ziyomo and Nasser Yao. Jonas Kizima from TALIRI and Angelo Mwilawa from Ministry of Livestock and Fisheries, Tanzania also supervised his genomic and morphological data collection while at the hub.

‘I hope to start multi-location trials in December 2020, once the Brachiaria cultivars are ready,’ remarks Mangesho about his next plans for the near future.

Patrick-Baenyi.jpg-edited

Africa Biosciences Challenge Fund fellow conducts inventive goat genetic diversity research in DR Congo

Goats are among the most common farm animals in developing countries. Africa is home to about 35% of the world’s goat population (FAO 2016). They play an important socio-economic, nutritional and cultural role in rural households. An important indicator of goats’ adaptation to environmental conditions is their reproductive efficiency.

DR Congo has three major agro-ecological zones: the alluvial basin in the northeast and the central part; savannah in the central, western and the southeast; and the high-altitude volcanic mountains in the east of the country. More than 4,082,624 indigenous goats are spread throughout these agro-ecological zones.


Herd of goats

In the Democratic Republic of Congo, goats are the second most domesticated species after chicken. Goats make up between 30% and 60% of the country’s total livestock numbers. The country hosts three major breeds: the small goat, dwarf goat and Kasai goat. Congolese goat farmers raise and breed goats for meat production and commercial transactions, contributing up to 72% of households’ income in rural areas in the country. The productivity of African’s indigenous goats is low, and little is documented on the genetic diversity, production system and distribution of goats in DR Congo.

Patrick Baenyi, an Africa Biosciences Challenge Fund (ABCF) fellow from the Evangelical University in Africa, DR Congo, undertook a survey on 202 goat farmers in the country to identify typology, production management and critical traits considered in goat selection by farmers in three agro-ecological zones — South Kivu, Tshopo and Kinshasa. In his pioneering research, he collected phenotypic data and used phenotypic and molecular markers, that are the basis for animal genetic diversity studies, to characterize goat genetic resources.

The survey revealed that goats in the three zones were clustered into breed clusters, grouped into small goat and dwarf goat, mostly characterized by a black coat colour and curved horn. The clusters were further distinguished by their reproductive traits (i.e. the number of kids per gestation period, such as twins or triplets) and the total number of kids per goat’s lifespan.


Baenyi and a member of his team collect a blood sample from a goat in Tshopo, DR Congo

Baenyi’s study was an important first step towards goat breeding in the country and aids decision-making on goat genetics improvement in the country. Its findings suggest that molecular characterization by sequencing and genotyping should be considered by animal breeders to clarify the physical differences in goat breeds that were observed and to identify whether these differences are genetic or adapted from environmental influence. A good understanding of this genetic characterization is useful in designing effective strategies for managing, improving and conserving domesticated animal resources.

‘Working with the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub reinforced my skills in conducting genetics research and showed me the value of collaborating with other researchers and sharing my findings with the public. I was also trained in bioinformatics and proposal writing and I have continued with the invaluable mentorship relationships that started during my time at the hub,’

says Baenyi.

He is currently working under the supervision of ILRI’s Roger Pelle and his and is studying for his PhD in animal genetics and breeding at the University of Nairobi.

Research at BecA-ILRI Hub supports vaccine development policy in Kenya

By Jane Githinji, assistant director of veterinary services, Kenya and ABCF alumnus

Jane githinjiAs head of the virology laboratory at the Central Veterinary Laboratories in the Directorate of Veterinary Services (DVS) in Kenya, my responsibilities include laboratory surveillance, and confi rmation and reporting of animal viral diseases. My reports form the basis upon which disease control strategies are developed. It is, therefore, of the utmost importance that these reports refl ect the true picture of the disease situation in the country, from which appropriate disease control policies and strategies can be derived.

Like in most developing countries, poultry farming in Kenya is mainly in the hands of the smallholder rural poor, mostly women and young people, and is usually the only livelihood source for smallholder farmers. Outbreaks of infectious viral diseases that cannot be treated pose a major constraint on poultry production. Vaccination is the recommended method of control for these diseases. But vaccines do not always prevent occurrence of a disease.

The apparent failure of vaccines to protect chicken from infectious bursal disease (IBD) got me interested in understanding the cause of the disease despite prompt vaccinations by farmers (IBD causes immune suppression, making chicken more prone to other infectious diseases). I wanted to improve my understanding of the epidemiology of IBD in Kenya, starting with the comparative molecular characterization of the circulating viruses with the currently used vaccine virus strains.

The facilities available at the central veterinary laboratory are suitable for carrying out basic molecular analysis. However, to undertake more advanced molecular research required to gain a better understanding of IBD viruses circulating in Kenya, I needed access to the facilities at the BecAILR Hub. Under the mentorship of the BecA-ILRI Hub scientists, in a very conducive research environment as an ABCF fellow, I learned many skills, including sequence editing and analysis, primer design, scientific paper writing and communicating science to non-scientists. These crosscutting skills will be very useful in improving my diagnostic capacity, and ultimately, scientific data collection for policy development at the DVS.

Based on the feedback and recommendations I gave to the DVS director, I am confident my research findings will form the basis for developing effective IBD control strategies, including diagnosis, vaccination, hatchery surveillance and certification, IBD vaccines registration and vaccine production. Implementation of such strategies will have far reaching impacts on poultry production, poverty alleviation, nutritional security, economic empowerment for women and young people, and self-employment. Reducing antimicrobial residues in poultry products will also contribute to a reduction in antimicrobial drug resistance in humans.

With my newly acquired skills, I will be able to contribute more to livestock research: science, technology and innovation. I am a better mentor to young people, a better leader and manager, a more fulfilled person, and, above all, an asset to my country. My time as an ABCF fellow marked the beginning of what I believe will be a journey full of discoveries, networking, research development and fulfilment.

chicken and chics

Read more about the bioscience research and innovations that underpin development outcomes in the BecA-ILRI Hub 2016 Annual Report.

Supporting African-led agricultural research to drive economic growth – Part 2

Investigating the role of bushmeat in the transmission of zoonotic diseases in Tanzania

Research conducted by the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub in collaboration with National Health Laboratory of the Tanzania Ministry of Health and Social Welfare; Nelson Mandela African Institution of Science and Technology (NM-AIST); Sokoine University of Agriculture; Tanzania National Parks; Tanzania Wildlife Research Institute; Frankfurt Zoological Society; and Pennsylvania State University.

An outcome of the BecA-ILRI Hub’s Swedish funded initiative to strengthen infrastructural and human capability at NM-AIST, was the awarding of a grant to the institution by the US Defense Threat Reduction Agency.

The NM-AIST School of Life Sciences and Bioengineering and a consortium of partners including the BecA-ILRI Hub received a grant to investigate the role of bushmeat in the transmission of six pathogens between animals and humans in Tanzania.

An interdisciplinary and multi-institutional team of scientists from Tanzania, Kenya and the US are using state-of-the-art techniques to map the distribution of anthrax, ebola, marburg and monkeypox viruses as well as Brucella and Coxiella in bushmeat in Tanzania. The team assesses the biological risk and potential for impact on human health from these diseases.

The BecA-ILRI Hub provides capacity building, expertise and technology for the microbiome component of the project using the genomics platform. During a week-long workshop facilitated by the BecA-ILRI Hub at NM-AIST, Francesca Stomeo provided training on the theory and practice of the genomics pipeline to be used in the project.

Read more about the bioscience research and innovations that underpin development outcomes in the BecA-ILRI Hub 2016 Annual Report.

bushmeat

Supporting African-led agricultural research to drive economic growth – Part 1

Scaling up the use of Brachiaria grass as a key forage in Africa

Research implemented in Kenya and Rwanda by the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub and national partners — the Kenya Agricultural and Livestock Research Organization (KALRO) and  Rwanda Agriculture Board (RAB)

On-farm evaluations in Kenya and Rwanda have confirmed that the use of Brachiaria grass extends forage availability for livestock by up to three dry months. These evaluations also confirmed previous observations of increases in milk production and weight when cattle are fed on Brachiaria grass. Over 6,000 farmers in both countries are growing the four best-bet Brachiaria varieties (Basilisk, MG4, Piatã and Xaraés), which were identified through the use of a participatory approach with key stakeholders. These varieties are being concurrently scaled out in Kenya and Mali by the Accelerated Value Chain Development (AVDD) dairy project, funded by the United States Agency for International Development (USAID) Feed the Future Initiative. There is growing interest and a push to adopt Brachiaria grasses in other countries including Botswana, Cameroon, Mozambique, Namibia and Somalia.

This research has identified potentially beneficial bacteria that occur naturally within the grass (bacterial endophytes). The endophytes could be useful: increasing production of hormones that regulate: plant growth and boost biomass production in Brachiaria; improving soil nutrient solubility and soil fertility; enhancing drought tolerance; and improving the overall health of the grass. These endophytes are currently being evaluated under greenhouse conditions for their ability to confer drought tolerance to Brachiaria.

To ensure the transfer of technologies to national programs, seven researchers from five East African countries were trained on forages biotechnology through the Brachiaria program. After periods of between six and nine months at the BecA-ILRI Hub the NARS researchers returned to their home institutions with transferable skills acquired through the training. An in-depth external review of the program concluded that it has made significant contributions to the improvement of forage availability and livestock productivity in the aforementioned program countries.

Read more about the bioscience research and innovations that underpin development outcomes in the BecA-ILRI Hub 2016 Annual Report.

Screen Shot 2017-08-10 at 3.22.04 PM

 

Driving Africa’s agricultural development by enabling biosciences innovations

AR 2016 reportIn 2016, the Biosciences eastern and central Africa–International Livestock Research Institute (BecA-ILRI) Hub celebrated 15 years as a centre for excellence for agricultural research. Against a backdrop of renewed impetus for innovation in agricultural research for development (AR4D) in Africa, BecA-ILRI Hub and its partners showcased their joint achievements in responding to the Science Agenda for Agriculture in Africa (S3A)— leveraging science in an agriculture-led social and economic transformation. The event also offered us an opportunity to acknowledge our donors, whose support has made these accomplishments possible.

Research facilitated by the BecA-ILRI Hub drives the bioscience innovations that underpin development outcomes. The success of the climate-smart Brachiaria program in developing technologies that are readily adapted by farmers has generated a demand for their scaling-up. Strategic partnerships, for instance with the North Carolina State University (NCSU)—leveraging the human resource of advanced research institutions—have enabled groundbreaking work in tackling the devastating cassava mosaic disease, potentially increasing yields in what is a staple crop for over 250 million people in Africa.

Through the Africa Biosciences Challenge Fund (ABCF) fellowship program, up and coming research fellows from national agricultural research systems (NARS) have contributed to the formulation of evidence-based agricultural policies. For instance, seminal work on maize and food safety has provided a clearer picture of the interventions required throughout the value chain in Rwanda and research into chicken vaccines has supported the elaboration of policies guiding the production of vaccines for infectious bursal disease in Kenya. Moreover, the establishment and support of communities of practice (CoPs) for ABCF alumni has enabled the development of a comprehensive regional approach to the tackling of key livestock and crop research challenges.

In step with technology advances, the BecA-ILRI Hub launched the Integrated Genotyping Service and Support (IGSS) platform to enhance efficiency and precision in plant and livestock breeding, as well as quality seeds assessment. In research led by the International Maize and Wheat Improvement Center (CIMMYT), application of this new technology has improved understanding of the genetic basis for resistance to maize lethal necrosis (MLN). The ongoing upgrading of the BecA-ILRI Hub’s technology platforms is fast-tracking research within the regional NARS and reducing the need for scientists to leave Africa to do their work.

Working to shape to continent-wide processes, BecA-ILRI Hub staff joined CGIAR research scientists, policymakers, and representatives of higher education networks and the private sector at a workshop to develop the concept of the the African Agricultural Research Programme (AARP). AARP is an initiative led by the Forum for Agricultural Research in Africa (FARA) to strengthen the continent’s agricultural research systems for increased productivity, profitability and sustainability. As part of our 2018–2023 strategy, the BecA-ILRI Hub will seek to play a leading role in the application of and support for biosciences in the region. A landscape survey confirmed the comparative advantage of the BecA-ILRI Hub as an important regionally-valued bioscience facility. It identified opportunities to enhance our role in helping set the bioscience agricultural research agenda, as well as an advocate for the government funding of NARS work in bioscience technologies and services.

The coming year will, therefore, be characterized by engagement with key stakeholders to guide the development of our new five-year plan. We remain committed to helping Africa use biosciences as a means of transforming agriculture, bridging the gap between population growth and agricultural productivity on the continent. To the readers of this report, we hope you will accompany us on this grand AR4D journey in Africa. To our many partners and donors, thank you for your support.

Jimmy Smith Director General, ILRI

Jimmy Smith
Director General, ILRI

Appolinaire Djikeng Director, BecA-ILRI Hub

Appolinaire Djikeng
Director, BecA-ILRI Hub

 

 

 

 

 

 

 

 

 

 

You can download the full 2016 Annual report: http://hdl.handle.net/10568/83016

________________________________________________________________________________

Exploring biological control of crop disease through plant-pest interactions

Aphids, leafhoppers and whiteflies are responsible for the spread of diseases causing significant crop yield losses globally. On 5 July 2017, the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub hosted a symposium to explore ways in which the knowledge of plants, disease-causing organisms and their vectors can be used to combat devastating crop diseases in Africa.

Stephen Runo of Kenyatta University (left) with JIC scientists Beccy Corkill, Olu Shorinola and Sam Mugford (photo JIC/Matt Heaton)
Stephen Runo of Kenyatta University (left) with JIC scientists Beccy Corkill, Olu Shorinola and Sam Mugford (photo JIC/Matt Heaton)

In sub Saharan Africa, the aphid-transmitted bean viruses—bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV)—cause up to 100 percent losses for smallholder bean farmers. Growers of cassava—a staple food for over 250 million people— experience losses of up to 23 million tonnes annually across Africa due to disease caused by whitefly-transmitted Cassava mosaic viruses.

In the face of increased regulations on the use of pesticides, a better understanding of the plant-microbe-vector interactions could lead to the development of urgently needed bio pest-controls. The July forum brought together researchers from the BecA-ILRI Hub, Kenyatta University, International Institute of Tropical Agriculture (IITA), Auburn University and North Carolina State University based in Africa; and the John Innes Centre (JIC) from UK.

From left to right: Josiah Mutuku (BecA-ILRI Hub), Olu Shorinola (JIC), Steven Runo (Kenyatta University), Beccy Corkill (JIC) and Sam Mugford (JIC) at the BecA-ILRI Hub greenhouses (photo: JIC/ Matt Heaton

From left to right: Josiah Mutuku (BecA-ILRI Hub), Olu Shorinola (JIC), Steven Runo (Kenyatta University), Beccy Corkill (JIC) and Sam Mugford (JIC) at the BecA-ILRI Hub greenhouses (photo: JIC/ Matt Heaton

The symposium was held under the Alliance for Accelerated Crop Improvement in Africa (ACACIA) initiative—a new initiative established to harness diverse research efforts for hastened crop improvement in Africa.

Read full story: Deciphering Plant-Insect Interactions on the ACACIA website.

Read about the ACACIA initiative: New initiative to accelerate crop improvement for food security in Africa

__________________________________________________________________________________

 

Scientists applying genomic ‘intelligence’ to sustainable livestock development in Africa at the BecA-ILRI Hub

Goat in a market in Nigeria (photo credit: ILRI/Mann).

Goat in a market in Nigeria (photo credit: ILRI/Mann).

From 19–30 June 2017, the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub will host the third edition of the Animal Quantitative Genetics and Genomics annual training workshop. The training is strengthening the capacity of researchers in Africa to apply an in-depth understanding of livestock genetics to the design of livestock breeding programmes.

Early this month (8–12 May 2017) over 250 experts from the public and private sectors in more than 50 countries across the globe gathered in Addis Ababa, Ethiopia to discuss the benefits and potential of livestock during the Global Agenda for Sustainable Livestock (GASL). The increasing demand for animal protein in emerging economies in Africa presents the challenge of sustainably improving livestock productivity while at the same time maintaining genetic diversity.

Since 2012, the BecA-ILRI Hub has been conducting research to improve performance of indigenous goats using their genetic diversity. Working in Cameroon and Ethiopia, the “Harnessing genetic diversity for improved goat productivity” project looked at the genetic adaptation of goat populations in the two countries to environmental challenges including drought and disease.

To Getinet Mekuriaw, an assistant professor at Bahir Dar University in Ethiopia and a visiting scientist at the BecA-ILRI Hub, the key to sustainable development of livestock in Africa is in the optimal exploitation of genetic resources to improve indigenous breeds.

‘We have the evidence of a rich genetic resource in livestock in Africa, and particularly in indigenous goats,’ Mekuriaw said ‘the next step is investing in research that will link this intelligence to the design of trait-focused breeding programs.’

Mekuriaw’s PhD contributed largely to establishing the extent of diversity among indigenous goat breeds in the two countries of interest for the BecA-led research. He also investigated the genetic potential of the goat populations in adaptation, disease resistance, reproduction and hair fibre production.

Strategies to enhance livestock production–including exploiting the natural potential of local breeds–could greatly contribute to the realization of the 2030 Agenda for Sustainable Development through increased agricultural capacity in developing countries.

_____________________________________________________________

Read more about the 7th Multi-stakeholder partnership meeting of the Global Agenda for Sustainable Livestock

Read related post – Cooperating with the future: Towards multiplying the multiple benefits of sustainable livestock 

Labs to limelight – scientists take the stage to share vision for a food secure Africa

In an unconventional approach to science communications, a diverse group of scientists at the Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub take to the stage to illustrate their role in the march towards a food secure Africa.

Performed by the BecA-ILRI Hub staff, research fellows from African national programs and international collaborators, this 25 minute skit sheds light on how technology, partnerships and increased research capabilities of national agricultural researchers and institutions can bring about agricultural development in Africa.

The play dramatizes the role of the BecA-ILRI Hub and its national and international partners in bridging high-end research with practical solutions for smallholder farmers. Established as an African centre for excellence for agricultural biosciences, the BecA-ILRI Hub supports African national agricultural research institutes and universities enhance in harnessing bioscience technologies for sustainable agricultural development in Africa.